Single-class orbits in nonlinear Leslie matrix models for semelparous populations
- PMID: 17639397
- DOI: 10.1007/s00285-007-0111-9
Single-class orbits in nonlinear Leslie matrix models for semelparous populations
Abstract
The dynamics of a general nonlinear Leslie matrix model for a semelparous population is investigated. We are especially concerned with the attractivity of the single-class state, in which all but one cohort (or year-class) are missing. Our result shows that the single-class state is attractive if inter-class competition is severe. Conversely, if intra-class competition is severe, the single-class state is repelling. Numerical investigations show that all classes do not necessarily coexist even if the single-class state is repelling.
Similar articles
-
Three stage semelparous Leslie models.J Math Biol. 2009 Jul;59(1):75-104. doi: 10.1007/s00285-008-0208-9. Epub 2008 Sep 6. J Math Biol. 2009. PMID: 18777023
-
Bifurcations of cycles in nonlinear semelparous Leslie matrix models.J Math Biol. 2020 Mar;80(4):1187-1207. doi: 10.1007/s00285-019-01459-9. Epub 2020 Jan 16. J Math Biol. 2020. PMID: 31950260
-
The winner takes it all: how semelparous insects can become periodical.J Math Biol. 2020 Jan;80(1-2):283-301. doi: 10.1007/s00285-019-01362-3. Epub 2019 Apr 27. J Math Biol. 2020. PMID: 31030298 Free PMC article.
-
Multiple attractors in a discrete competition model.Theor Popul Biol. 2007 Nov;72(3):379-88. doi: 10.1016/j.tpb.2007.07.004. Epub 2007 Aug 8. Theor Popul Biol. 2007. PMID: 17869318 Review.
-
Modelling perspectives on aging: can mathematics help us stay young?J Theor Biol. 2001 Dec 21;213(4):509-25. doi: 10.1006/jtbi.2001.2429. J Theor Biol. 2001. PMID: 11742522 Review.
Cited by
-
Three stage semelparous Leslie models.J Math Biol. 2009 Jul;59(1):75-104. doi: 10.1007/s00285-008-0208-9. Epub 2008 Sep 6. J Math Biol. 2009. PMID: 18777023
-
Periodic orbits near heteroclinic cycles in a cyclic replicator system.J Math Biol. 2012 Apr;64(5):855-72. doi: 10.1007/s00285-011-0435-3. Epub 2011 Jun 8. J Math Biol. 2012. PMID: 21656008
-
Bifurcations of cycles in nonlinear semelparous Leslie matrix models.J Math Biol. 2020 Mar;80(4):1187-1207. doi: 10.1007/s00285-019-01459-9. Epub 2020 Jan 16. J Math Biol. 2020. PMID: 31950260
References
MeSH terms
LinkOut - more resources
Full Text Sources