Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;6(9):656-60.
doi: 10.1038/nmat1965. Epub 2007 Jul 22.

Elastic membranes of close-packed nanoparticle arrays

Affiliations

Elastic membranes of close-packed nanoparticle arrays

Klara E Mueggenburg et al. Nat Mater. 2007 Sep.

Abstract

Nanoparticle superlattices are hybrid materials composed of close-packed inorganic particles separated by short organic spacers. Most work so far has concentrated on the unique electronic, optical and magnetic behaviour of these systems. Here, we demonstrate that they also possess remarkable mechanical properties. We focus on two-dimensional arrays of close-packed nanoparticles and show that they can be stretched across micrometre-size holes. The resulting free-standing monolayer membranes extend over hundreds of particle diameters without crosslinking of the ligands or further embedding in polymer. To characterize the membranes we measured elastic properties with force microscopy and determined the array structure using transmission electron microscopy. For dodecanethiol-ligated 6-nm-diameter gold nanocrystal monolayers, we find a Young's modulus of the order of several GPa. This remarkable strength is coupled with high flexibility, enabling the membranes to bend easily while draping over edges. The arrays remain intact and able to withstand tensile stresses up to temperatures around 370 K. The purely elastic response of these ultrathin membranes, coupled with exceptional robustness and resilience at high temperatures should make them excellent candidates for a wide range of sensor applications.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources