Efficient parameter estimation for RNA secondary structure prediction
- PMID: 17646296
- DOI: 10.1093/bioinformatics/btm223
Efficient parameter estimation for RNA secondary structure prediction
Abstract
Motivation: Accurate prediction of RNA secondary structure from the base sequence is an unsolved computational challenge. The accuracy of predictions made by free energy minimization is limited by the quality of the energy parameters in the underlying free energy model. The most widely used model, the Turner99 model, has hundreds of parameters, and so a robust parameter estimation scheme should efficiently handle large data sets with thousands of structures. Moreover, the estimation scheme should also be trained using available experimental free energy data in addition to structural data.
Results: In this work, we present constraint generation (CG), the first computational approach to RNA free energy parameter estimation that can be efficiently trained on large sets of structural as well as thermodynamic data. Our CG approach employs a novel iterative scheme, whereby the energy values are first computed as the solution to a constrained optimization problem. Then the newly computed energy parameters are used to update the constraints on the optimization function, so as to better optimize the energy parameters in the next iteration. Using our method on biologically sound data, we obtain revised parameters for the Turner99 energy model. We show that by using our new parameters, we obtain significant improvements in prediction accuracy over current state of-the-art methods.
Availability: Our CG implementation is available at http://www.rnasoft.ca/CG/.
Similar articles
-
CONTRAfold: RNA secondary structure prediction without physics-based models.Bioinformatics. 2006 Jul 15;22(14):e90-8. doi: 10.1093/bioinformatics/btl246. Bioinformatics. 2006. PMID: 16873527
-
Predicting a set of minimal free energy RNA secondary structures common to two sequences.Bioinformatics. 2005 May 15;21(10):2246-53. doi: 10.1093/bioinformatics/bti349. Epub 2005 Feb 24. Bioinformatics. 2005. PMID: 15731207
-
INFO-RNA--a fast approach to inverse RNA folding.Bioinformatics. 2006 Aug 1;22(15):1823-31. doi: 10.1093/bioinformatics/btl194. Epub 2006 May 18. Bioinformatics. 2006. PMID: 16709587
-
Prediction of RNA secondary structure by free energy minimization.Curr Opin Struct Biol. 2006 Jun;16(3):270-8. doi: 10.1016/j.sbi.2006.05.010. Epub 2006 May 19. Curr Opin Struct Biol. 2006. PMID: 16713706 Review.
-
How do RNA folding algorithms work?Nat Biotechnol. 2004 Nov;22(11):1457-8. doi: 10.1038/nbt1104-1457. Nat Biotechnol. 2004. PMID: 15529172 Review.
Cited by
-
COFOLD: an RNA secondary structure prediction method that takes co-transcriptional folding into account.Nucleic Acids Res. 2013 May;41(9):e102. doi: 10.1093/nar/gkt174. Epub 2013 Mar 19. Nucleic Acids Res. 2013. PMID: 23511969 Free PMC article.
-
Free energy estimation of short DNA duplex hybridizations.BMC Bioinformatics. 2010 Feb 24;11:105. doi: 10.1186/1471-2105-11-105. BMC Bioinformatics. 2010. PMID: 20181279 Free PMC article.
-
A two-length-scale polymer theory for RNA loop free energies and helix stacking.RNA. 2010 Jul;16(7):1350-5. doi: 10.1261/rna.1831710. Epub 2010 May 26. RNA. 2010. PMID: 20504955 Free PMC article.
-
Computational approaches to 3D modeling of RNA.J Phys Condens Matter. 2010 Jul 21;22(28):283101. doi: 10.1088/0953-8984/22/28/283101. Epub 2010 Jun 15. J Phys Condens Matter. 2010. PMID: 21399271 Free PMC article. Review.
-
Review of machine learning methods for RNA secondary structure prediction.PLoS Comput Biol. 2021 Aug 26;17(8):e1009291. doi: 10.1371/journal.pcbi.1009291. eCollection 2021 Aug. PLoS Comput Biol. 2021. PMID: 34437528 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources