Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 1;23(13):i577-86.
doi: 10.1093/bioinformatics/btm227.

A graph-based approach to systematically reconstruct human transcriptional regulatory modules

Affiliations

A graph-based approach to systematically reconstruct human transcriptional regulatory modules

Xifeng Yan et al. Bioinformatics. .

Abstract

Motivation: A major challenge in studying gene regulation is to systematically reconstruct transcription regulatory modules, which are defined as sets of genes that are regulated by a common set of transcription factors. A commonly used approach for transcription module reconstruction is to derive coexpression clusters from a microarray dataset. However, such results often contain false positives because genes from many transcription modules may be simultaneously perturbed upon a given type of conditions. In this study, we propose and validate that genes, which form a coexpression cluster in multiple microarray datasets across diverse conditions, are more likely to form a transcription module. However, identifying genes coexpressed in a subset of many microarray datasets is not a trivial computational problem.

Results: We propose a graph-based data-mining approach to efficiently and systematically identify frequent coexpression clusters. Given m microarray datasets, we model each microarray dataset as a coexpression graph, and search for vertex sets which are frequently densely connected across [theta m] datasets (0 < or = theta < or = 1). For this novel graph-mining problem, we designed two techniques to narrow down the search space: (1) partition the input graphs into (overlapping) groups sharing common properties; (2) summarize the vertex neighbor information from the partitioned datasets onto the 'Neighbor Association Summary Graph's for effective mining. We applied our method to 105 human microarray datasets, and identified a large number of potential transcription modules, activated under different subsets of conditions. Validation by ChIP-chip data demonstrated that the likelihood of a coexpression cluster being a transcription module increases significantly with its recurrence. Our method opens a new way to exploit the vast amount of existing microarray data accumulation for gene regulation study. Furthermore, the algorithm is applicable to other biological networks for approximate network module mining.

Availability: http://zhoulab.usc.edu/NeMo/.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources