Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul 31;116(5):463-70.
doi: 10.1161/CIRCULATIONAHA.107.706887. Epub 2007 Jul 23.

Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia

Affiliations

Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia

Eyal Nof et al. Circulation. .

Abstract

Background: The hyperpolarization-activated nucleotide-gated channel--HCN4 plays a major role in the diastolic depolarization of sinus atrial node cells. Mutant HCN4 channels have been found to be associated with inherited sinus bradycardia.

Methods and results: Sixteen members of a family with sinus bradycardia were evaluated. Evaluation included a clinical questionnaire, 12-lead ECGs, Holter monitoring, echocardiography, and treadmill exercise testing. Eight family members (5 males) were classified as affected. All affected family members were asymptomatic with normal exercise capacity during long-term follow-up. Electrophysiological testing performed on 2 affected family members confirmed significant isolated sinus node dysfunction. Segregation analysis suggested autosomal-dominant inheritance. Direct sequencing of the exons encoding HCN4 revealed a missense mutation, G480R, in the ion channel pore domain in all affected family members. Function analysis, including expression of HCN4 wild-type and G480R in Xenopus oocytes and human embryonic kidney 293 cells, revealed that mutant channels were activated at more negative voltages compared with wild-type channels. Synthesis and expression of the wild-type and mutant HCN4 channel on the plasma membrane tested in human embryonic kidney 293 cells using biotinylation and Western blot analysis demonstrated a reduction in synthesis and a trafficking defect in mutant compared with wild-type channels.

Conclusions: We describe an inherited, autosomal-dominant form of sinus node dysfunction caused by a missense mutation in the HCN4 ion channel pore. Despite its critical location, this mutation carries a favorable prognosis without the need for pacemaker implantation during long-term follow-up.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms