Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;274(16):4315-25.
doi: 10.1111/j.1742-4658.2007.05961.x. Epub 2007 Jul 25.

Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex

Affiliations
Free article

Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex

Kazunari Yoneda et al. FEBS J. 2007 Aug.
Free article

Abstract

The crystal structure of the highly thermostable L-aspartate dehydrogenase (L-aspDH; EC 1.4.1.21) from the hyperthermophilic archaeon Archaeoglobus fulgidus was determined in the presence of NAD and a substrate analog, citrate. The dimeric structure of A. fulgidus L-aspDH was refined at a resolution of 1.9 A with a crystallographic R-factor of 21.7% (R(free) = 22.6%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. Structural comparison of the A. fulgidus L-aspDH/NAD/citrate ternary complex and the Thermotoga maritima L-aspDH/NAD binary complex showed that A. fulgidus L-aspDH assumes a closed conformation and that a large movement of the two loops takes place during substrate binding. Like T. maritima L-aspDH, the A. fulgidus enzyme is highly thermostable. But whereas a large number of inter- and intrasubunit ion pairs are responsible for the stability of A. fulgidus L-aspDH, a large number of inter- and intrasubunit aromatic pairs stabilize the T. maritima enzyme. Thus stabilization of these two L-aspDHs appears to be achieved in different ways. This is the first detailed description of substrate and coenzyme binding to L-aspDH and of the molecular basis of the high thermostability of a hyperthermophilic L-aspDH.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources