Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization
- PMID: 17651921
- PMCID: PMC2111172
- DOI: 10.1016/j.gene.2007.06.016
Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization
Abstract
Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage and compare the resulting data can be problematic. Biological, experimental, and technical variations between studies of the same phenotype/phenomena create substantial differences in results. The application of conventional meta-analysis to raw microarray data is complicated by differences in the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative approach to combining multiple microarray studies is to compare the published gene lists which result from the investigators' analyses of the raw data, as implemented in Lists of Lists Annotated (LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/l2l/). The present review considers both the potential value and the limitations of databasing and enabling the comparison of results from different microarray studies. Further, a major impediment to cross-study comparisons is the absence of a standard for reporting microarray study results. We propose a reporting standard: standard microarray results template (SMART), which will facilitate the integration of microarray studies.
Figures



Similar articles
-
L2L: a simple tool for discovering the hidden significance in microarray expression data.Genome Biol. 2005;6(9):R81. doi: 10.1186/gb-2005-6-9-r81. Epub 2005 Aug 31. Genome Biol. 2005. PMID: 16168088 Free PMC article.
-
List of lists-annotated (LOLA): a database for annotation and comparison of published microarray gene lists.Gene. 2005 Oct 24;360(1):78-82. doi: 10.1016/j.gene.2005.07.008. Epub 2005 Sep 2. Gene. 2005. PMID: 16140476 Review.
-
Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control.BMC Bioinformatics. 2005 Dec 1;6 Suppl 4(Suppl 4):S14. doi: 10.1186/1471-2105-6-S4-S14. BMC Bioinformatics. 2005. PMID: 16351740 Free PMC article.
-
MADGene: retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets.Bioinformatics. 2011 Mar 1;27(5):725-6. doi: 10.1093/bioinformatics/btq710. Epub 2011 Jan 6. Bioinformatics. 2011. PMID: 21216776 Free PMC article.
-
Comprehensive literature review and statistical considerations for microarray meta-analysis.Nucleic Acids Res. 2012 May;40(9):3785-99. doi: 10.1093/nar/gkr1265. Epub 2012 Jan 19. Nucleic Acids Res. 2012. PMID: 22262733 Free PMC article. Review.
Cited by
-
When is hub gene selection better than standard meta-analysis?PLoS One. 2013 Apr 17;8(4):e61505. doi: 10.1371/journal.pone.0061505. Print 2013. PLoS One. 2013. PMID: 23613865 Free PMC article.
-
Microarray meta-analysis database (M(2)DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database.BMC Bioinformatics. 2010 Aug 10;11:421. doi: 10.1186/1471-2105-11-421. BMC Bioinformatics. 2010. PMID: 20698961 Free PMC article.
-
Integrative meta-analysis of differential gene expression in acute myeloid leukemia.PLoS One. 2010 Mar 1;5(3):e9466. doi: 10.1371/journal.pone.0009466. PLoS One. 2010. PMID: 20209125 Free PMC article.
-
Quantitative comparison of microarray experiments with published leukemia related gene expression signatures.BMC Bioinformatics. 2009 Dec 15;10:422. doi: 10.1186/1471-2105-10-422. BMC Bioinformatics. 2009. PMID: 20003504 Free PMC article.
-
Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior.BMC Bioinformatics. 2011 Nov 11;12:438. doi: 10.1186/1471-2105-12-438. BMC Bioinformatics. 2011. PMID: 22078224 Free PMC article.
References
-
- Ball CA, Brazma A. MGED standards: work in progress. Omics. 2006;10(2):138–44. - PubMed
-
- Bammler T, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods. 2005;2(5):351–6. - PubMed
-
- Brazma A, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71. - PubMed
-
- Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R, Dohner H, Pllack JR. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350(16):1605–16. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources