Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Sep;3(3):239-43.
doi: 10.1016/j.nano.2007.05.001. Epub 2007 Jul 24.

Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis

Affiliations
Comparative Study

Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis

Zahoor Ahmad et al. Nanomedicine. 2007 Sep.

Abstract

The present study was designed to evaluate the chemotherapeutic potential of alginate nanoparticle-encapsulated econazole and antitubercular drugs (ATDs) against murine tuberculosis. Alginate nanoparticles encapsulating econazole and ATDs were prepared by the cation-induced controlled gelification of alginate and were characterized. Drugs were analyzed by high-performance liquid chromatography. All the ATDs were detected above minimum inhibitory concentrations for as long as 15 days and econazole until the day 8 in organs (lungs, liver, and spleen) after administration of encapsulated drugs, whereas free drugs remained detectable for only 12 to 24 hours. Eight doses of alginate nanoparticle-encapsulated econazole or 112 doses of free econazole reduced bacterial burden by more than 90% in the lungs and spleen of mice infected with Mycobacterium tuberculosis. Econazole (free or encapsulated) could replace rifampicin and isoniazid during chemotherapy of murine tuberculosis. Alginate nanoparticles reduced the dosing frequency of azoles and ATDs by 15-fold. Alginate nanoparticles are the ideal carriers of azole and antitubercular drugs, which can reduce dosing frequency of azoles as well as ATDs for the better management of tuberculosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources