Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;21(11):2785-94.
doi: 10.1210/me.2007-0167. Epub 2007 Jul 24.

Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes

Affiliations

Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes

Aibin He et al. Mol Endocrinol. 2007 Nov.

Abstract

Micro-RNAs (miRNAs) have been suggested to play pivotal roles in multifarious diseases associated with the posttranscriptional regulation of protein-coding genes. In this study, we aimed to investigate the function of miRNAs in type 2 diabetes mellitus. The miRNAs expression profiles were examined by miRNA microarray analysis of skeletal muscles from healthy and Goto-Kakizaki rats. We identified four up-regulated miRNAs, and 11 miRNAs that were down-regulated relative to normal individuals. Among induced miRNAs were three paralogs of miR-29, miR-29a, miR-29b, and miR-29c. Northern blotting further confirmed their elevated expression in three important target tissues of insulin action: muscle, fat, and liver of diabetic rats. Adenovirus-mediated overexpression of miR-29a/b/c in 3T3-L1 adipocytes could largely repress insulin-stimulated glucose uptake, presumably through inhibiting Akt activation. The increase in miR-29 level caused insulin resistance, similar to that of incubation with high glucose and insulin in combination, which, in turn, induced miR-29a and miR-29b expression. In this paper, we demonstrate that Akt is not the direct target gene of miR-29 and that the negative effects of miR-29 on insulin signaling might be mediated by other unknown intermediates. Taken together, these data reveal the crucial role of miR-29 in type 2 diabetes.

PubMed Disclaimer

Similar articles

Cited by

Publication types