Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;7(2):114-21.
doi: 10.1007/s12012-007-0005-5.

Molecular and cellular mechanisms of anthracycline cardiotoxicity

Affiliations
Review

Molecular and cellular mechanisms of anthracycline cardiotoxicity

Billy Chen et al. Cardiovasc Toxicol. 2007.

Abstract

The molecular and cellular mechanisms that cause cumulative dose-dependent anthracycline-cardiotoxicity remain controversial and incompletely understood. Studies examining the effects of anthracyclines in cardiac myocytes inA vitro have demonstrated several forms of cellular injury. Cell death in response to anthracyclines can be observed by one of several mechanisms including apoptosis and necrosis. Cell death by apoptosis can be inhibited by dexrazoxane, the iron chelator that is known to prevent clinical development of heart failure at high cumulative anthracycline exposure. Together with clinical evidence for myocyte death after anthracycline exposure, in the form of elevations in serum troponin, make myocyte cell death a probable mechanism for anthracycline-induced cardiac injury. Other mechanisms of myocyte injury include the development of cellular \'sarcopenia\' characterized by disruption of normal sarcomere structure. Anthracyclines suppress expression of several cardiac transcription factors, and this may play a role in the development of myocyte death as well as sarcopenia. Degradation of the giant myofilament protein titin may represent an important proximal step that leads to accelerated myofilament degradation. Titin is an entropic spring element in the sarcomere that regulates length-dependent calcium sensitivity. Thus titin degradation may lead to impaired diastolic as well as systolic dysfunction, as well as potentiate the effect of suppression of transcription of sarcomere proteins. An interesting interaction has been noted clinically between anthracyclines and newer cancer therapies that target the erbB2 receptor tyrosine kinase. Studies of erbB2 function in viro suggest that signaling through erbB2 by the growth factor neuregulin may regulate cardiac myocyte sarcomere turnover, as well as myocyte-myocyte/myocyte-matrix force coupling. A combination of further in vitro studies, with more careful monitoring of cardiac function after exposure to these cancer therapies, may help to understand to what extent these mechanisms are at work during clinical exposure of the heart to these important pharmaceuticals.

PubMed Disclaimer

Publication types

LinkOut - more resources