Neural decision boundaries for maximal information transmission
- PMID: 17653273
- PMCID: PMC1920551
- DOI: 10.1371/journal.pone.0000646
Neural decision boundaries for maximal information transmission
Abstract
We consider here how to separate multidimensional signals into two categories, such that the binary decision transmits the maximum possible information about those signals. Our motivation comes from the nervous system, where neurons process multidimensional signals into a binary sequence of responses (spikes). In a small noise limit, we derive a general equation for the decision boundary that locally relates its curvature to the probability distribution of inputs. We show that for Gaussian inputs the optimal boundaries are planar, but for non-Gaussian inputs the curvature is nonzero. As an example, we consider exponentially distributed inputs, which are known to approximate a variety of signals from natural environment.
Conflict of interest statement
Figures




Similar articles
-
Maximally informative pairwise interactions in networks.Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23. Phys Rev E Stat Nonlin Soft Matter Phys. 2009. PMID: 19905153 Free PMC article.
-
Expectation in perceptual decision making: neural and computational mechanisms.Nat Rev Neurosci. 2014 Nov;15(11):745-56. doi: 10.1038/nrn3838. Epub 2014 Oct 15. Nat Rev Neurosci. 2014. PMID: 25315388 Review.
-
Neurosignals. Editorial note.Neurosignals. 2008;16(4):259. doi: 10.1159/000123036. Epub 2008 Jul 18. Neurosignals. 2008. PMID: 18635942 No abstract available.
-
Suprathreshold stochastic resonance in neural processing tuned by correlation.Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011923. doi: 10.1103/PhysRevE.84.011923. Epub 2011 Jul 25. Phys Rev E Stat Nonlin Soft Matter Phys. 2011. PMID: 21867229
-
The shape of neural dependence.Neural Comput. 2004 Apr;16(4):665-72. doi: 10.1162/089976604322860659. Neural Comput. 2004. PMID: 15025825 Review.
Cited by
-
Maximally informative pairwise interactions in networks.Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031914. doi: 10.1103/PhysRevE.80.031914. Epub 2009 Sep 23. Phys Rev E Stat Nonlin Soft Matter Phys. 2009. PMID: 19905153 Free PMC article.
-
Efficient communication over complex dynamical networks: The role of matrix non-normality.Sci Adv. 2020 May 27;6(22):eaba2282. doi: 10.1126/sciadv.aba2282. eCollection 2020 May. Sci Adv. 2020. PMID: 32518824 Free PMC article.
-
Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing.Nat Neurosci. 2012 Jun;15(6):913-9. doi: 10.1038/nn.3105. Nat Neurosci. 2012. PMID: 22581184 Free PMC article.
-
Minimal models of multidimensional computations.PLoS Comput Biol. 2011 Mar;7(3):e1001111. doi: 10.1371/journal.pcbi.1001111. Epub 2011 Mar 24. PLoS Comput Biol. 2011. PMID: 21455284 Free PMC article.
-
Exact feature probabilities in images with occlusion.J Vis. 2010 Dec 31;10(14):42. doi: 10.1167/10.14.42. J Vis. 2010. PMID: 21196508 Free PMC article.
References
-
- Rieke F, Warland D, de Ruyter van Steveninck R, Bialek WB. Cambridge, MA: MIT Press; 1997. Spikes: Exploring the Neural Code. p. 416.
-
- Attneave F. Some informational aspects of visual perception. Psychol Rev. 1954;61:183–193. - PubMed
-
- Barlow HB. Sensory mechanisms, the reduction of redundancy, and intelligence. In: Blake DV, Utlley AM, editors. Proceedings of the Symposium on the Mechanization of Thought Processes. London: HM Stationery Office; 1959.
-
- Barlow HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith WA, editor. Sensory Communication. Cambridge, MA: MIT Press; 1961. pp. 217–234.
-
- Srinivasan MV, Laughlin SB, Dubs A. Predictive coding: A fresh view of inhibition in the retina. Proc R Soc London B. 1982;216:427–459. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials