Multiple active site histidine protonation states in Acetobacter aceti N5-carboxyaminoimidazole ribonucleotide mutase detected by REDOR NMR
- PMID: 17655332
- PMCID: PMC2793534
- DOI: 10.1021/bi700899q
Multiple active site histidine protonation states in Acetobacter aceti N5-carboxyaminoimidazole ribonucleotide mutase detected by REDOR NMR
Abstract
Class I PurE (N5-carboxyaminoimidazole mutase) catalyzes a chemically unique mutase reaction. A working mechanistic hypothesis involves a histidine (His45 in Escherichia coli PurE) functioning as a general acid, but no evidence for multiple protonation states has been obtained. Solution NMR is a peerless tool for this task but has had limited application to enzymes, most of which are larger than its effective molecular size limit. Solid-state NMR is not subject to this limit. REDOR NMR studies of a 151 kDa complex of uniformly 15N-labeled Acetobacter aceti PurE (AaPurE) and the active site ligand [6-13C]citrate probed a single ionization equilibrium associated with the key histidine (AaPurE His59). In the AaPurE complex, the citrate central carboxylate C6 13C peak moves upfield, indicating diminution of negative charge, and broadens, indicating heterogeneity. Histidine 15N chemical shifts indicate His59 exists in approximately equimolar amounts of an Ndelta-unprotonated (pyridine-like) form and an Ndelta-protonated (pyrrole-like) form, each of which is approximately 4 A from citrate C6. The spectroscopic data are consistent with proton transfers involving His59 Ndelta that are invoked in the class I PurE mechanism.
Figures
References
-
- Mueller EJ, Meyer E, Rudolph J, Davisson VJ, Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry. 1994;33:2269–2278. - PubMed
-
- Kappock TJ, Ealick SE, Stubbe J. Modular evolution of the purine biosynthetic pathway. Curr. Opin. Chem. Biol. 2000;4:567–572. - PubMed
-
- Meyer E, Kappock TJ, Osuji C, Stubbe J. Evidence for the direct transfer of the carboxylate of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase. Biochemistry. 1999;38:3012–3018. - PubMed
-
- Firestine SM, Poon S-W, Mueller EJ, Stubbe J, Davisson VJ. Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms. Biochemistry. 1994;33:11927–11934. - PubMed
-
- Mathews II, Kappock TJ, Stubbe J, Ealick SE. Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Structure Fold. Des. 1999;7:1395–1406. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
