Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Aug;27(8):1181-8.
doi: 10.1592/phco.27.8.1181.

Sugammadex: a novel agent for the reversal of neuromuscular blockade

Affiliations
Review

Sugammadex: a novel agent for the reversal of neuromuscular blockade

Wayne T Nicholson et al. Pharmacotherapy. 2007 Aug.

Abstract

To achieve spontaneous ventilation after completion of surgery, the nondepolarizing effects on skeletal muscle relaxation are often reversed by administration of an acetylcholinesterase inhibitor. However, these agents increase acetylcholine at both the neuromuscular junction and the muscarinic receptors. Therefore, coadministration of an anticholinergic agent is required to prevent parasympathetic adverse effects. In addition, a relative pharmacologic ceiling effect is seen with inhibition of acetylcholinesterase, necessitating some recovery of neuromuscular function before an acetylcholinesterase inhibitor is administered. Sugammadex is a new modified gamma-cyclodextrin compound under clinical investigation in the United States. It does not interact with cholinergic mechanisms to elicit reversal. Instead, it is a selective relaxant binding agent and acts by forming a 1:1 complex with steroidal nondepolarizing neuromuscular blockers in the plasma, lowering the effective concentration available at the receptor. Due to its selectivity, sugammadex does not inhibit the effects of nondepolarizing agents of the benzylisoquinolinium class. In contrast to acetylcholinesterase inhibition, sugammadex is effective even when administered during profound blockade, and it does not require coadministration of an anticholinergic agent. It provides a novel mechanism of action for reversal of the neuromuscular block induced by nondepolarizing aminosteroidal agents.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources