Excitation-contraction coupling and mitochondrial energetics
- PMID: 17657400
- PMCID: PMC2785083
- DOI: 10.1007/s00395-007-0666-z
Excitation-contraction coupling and mitochondrial energetics
Abstract
Cardiac excitation-contraction (EC) coupling consumes vast amounts of cellular energy, most of which is produced in mitochondria by oxidative phosphorylation. In order to adapt the constantly varying workload of the heart to energy supply, tight coupling mechanisms are essential to maintain cellular pools of ATP, phosphocreatine and NADH. To our current knowledge, the most important regulators of oxidative phosphorylation are ADP, Pi, and Ca2+. However, the kinetics of mitochondrial Ca2+-uptake during EC coupling are currently a matter of intense debate. Recent experimental findings suggest the existence of a mitochondrial Ca2+ microdomain in cardiac myocytes, justified by the close proximity of mitochondria to the sites of cellular Ca2+ release, i. e., the ryanodine receptors of the sarcoplasmic reticulum. Such a Ca2+ microdomain could explain seemingly controversial results on mitochondrial Ca2+ uptake kinetics in isolated mitochondria versus whole cardiac myocytes. Another important consideration is that rapid mitochondrial Ca2+ uptake facilitated by microdomains may shape cytosolic Ca2+ signals in cardiac myocytes and have an impact on energy supply and demand matching. Defects in EC coupling in chronic heart failure may adversely affect mitochondrial Ca2+ uptake and energetics, initiating a vicious cycle of contractile dysfunction and energy depletion. Future therapeutic approaches in the treatment of heart failure could be aimed at interrupting this vicious cycle.
Figures













Similar articles
-
The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.Ann N Y Acad Sci. 2008 Mar;1123:69-78. doi: 10.1196/annals.1420.009. Ann N Y Acad Sci. 2008. PMID: 18375579
-
Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.Circ Res. 2006 Jul 21;99(2):172-82. doi: 10.1161/01.RES.0000232546.92777.05. Epub 2006 Jun 15. Circ Res. 2006. PMID: 16778127 Free PMC article.
-
Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.J Physiol. 2000 May 1;524 Pt 3(Pt 3):795-806. doi: 10.1111/j.1469-7793.2000.00795.x. J Physiol. 2000. PMID: 10790159 Free PMC article.
-
Calcium release microdomains and mitochondria.Cardiovasc Res. 2013 May 1;98(2):259-68. doi: 10.1093/cvr/cvt032. Epub 2013 Feb 14. Cardiovasc Res. 2013. PMID: 23417042 Review.
-
SR and mitochondria: calcium cross-talk between kissing cousins.J Mol Cell Cardiol. 2013 Feb;55:42-9. doi: 10.1016/j.yjmcc.2012.07.015. Epub 2012 Aug 2. J Mol Cell Cardiol. 2013. PMID: 22902320 Review.
Cited by
-
Activation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids.J Biol Chem. 2012 Apr 27;287(18):14880-95. doi: 10.1074/jbc.M111.336776. Epub 2012 Mar 2. J Biol Chem. 2012. PMID: 22389508 Free PMC article.
-
Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering.J Gen Physiol. 2012 Jun;139(6):465-78. doi: 10.1085/jgp.201210784. J Gen Physiol. 2012. PMID: 22641641 Free PMC article.
-
Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential.J Bioenerg Biomembr. 2012 Apr;44(2):243-52. doi: 10.1007/s10863-012-9426-3. Epub 2012 Mar 18. J Bioenerg Biomembr. 2012. PMID: 22426814
-
Sodium accumulation in SERCA knockout-induced heart failure.Biophys J. 2012 May 2;102(9):2039-48. doi: 10.1016/j.bpj.2012.03.045. Biophys J. 2012. PMID: 22824267 Free PMC article.
-
Mitochondrial Dysfunction-Associated Arrhythmogenic Substrates in Diabetes Mellitus.Front Physiol. 2018 Dec 6;9:1670. doi: 10.3389/fphys.2018.01670. eCollection 2018. Front Physiol. 2018. PMID: 30574091 Free PMC article. Review.
References
-
- Abozguia K, Clarke K, Lee L, Frenneaux M. Modification of myocardial substrate use as a therapy for heart failure. Nat Clin Pract Cardiovasc Med. 2006;3:490–498. - PubMed
-
- Aker S, Snabaitis AK, Konietzka I, Van De Sand A, Bongler K, Avkiran M, Heusch G, Schulz R. Inhibition of the Na+/H+ exchanger attenuates the deterioration of ventricular function during pacing-induced heart failure in rabbits. Cardiovasc Res. 2004;63:273–282. - PubMed
-
- Auffermann W, Wu ST, Parmley WW, Wikman-Coffelt J. Glycolysis in heart failure: a 31P-NMR and surface fluorometry study. Basic Res Cardiol. 1990;85:342–357. - PubMed
-
- Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015–1024. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous