Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2007 Sep-Nov;32(8-10):1128-32.
doi: 10.1016/j.psyneuen.2007.06.004. Epub 2007 Jul 20.

Effects of acute ovarian hormone suppression on the human brain: an in vivo 1H MRS study

Affiliations
Clinical Trial

Effects of acute ovarian hormone suppression on the human brain: an in vivo 1H MRS study

Michael C Craig et al. Psychoneuroendocrinology. 2007 Sep-Nov.

Abstract

A previous proton magnetic resonance spectroscopy ((1)H MRS) study carried out by our group indicated that post-menopausal women who started taking oestrogen therapy (ET) at or around the menopause had a significantly lower choline (Cho) concentration in the hippocampus and parietal lobe than those who were ET naïve, suggesting that long-term ET positively modulates neuronal/glial membrane turnover in older females. The objective of the current study was to determine whether neuronal membrane turnover is modulated by sex hormones in younger women following a pharmacologic challenge that induced acute ovarian hormone suppression. We carried out an in vivo(1)H MRS study in a group of 10 premenopausal women pre- and post-8 weeks of acute ovarian suppression with a Gonadotrophin Releasing Hormone analogue (GnRHa) (two Zoladex 3.6 mg implants). We report that young women, post-ovarian suppression, had a significant increase in Cho concentration (and Cho/Cr ratio) in the dorsolateral prefrontal cortex (DLPFC). They also showed a trend to a significant increase in Cho concentration in the hippocampus. This supports our previous findings and adds to the evidence that neuronal/glial membrane metabolism is affected by sex hormones in women.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources