Adaptive regulation of sparseness by feedforward inhibition
- PMID: 17660812
- PMCID: PMC4061731
- DOI: 10.1038/nn1947
Adaptive regulation of sparseness by feedforward inhibition
Abstract
In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions.
Conflict of interest statement
The authors declare no competing financial interests.
Figures








Similar articles
-
From synchrony to sparseness.Trends Neurosci. 2003 Feb;26(2):61-4. doi: 10.1016/s0166-2236(02)00016-4. Trends Neurosci. 2003. PMID: 12536128
-
Oscillations and sparsening of odor representations in the mushroom body.Science. 2002 Jul 19;297(5580):359-65. doi: 10.1126/science.1070502. Science. 2002. PMID: 12130775
-
Presynaptic developmental plasticity allows robust sparse wiring of the Drosophila mushroom body.Elife. 2020 Jan 8;9:e52278. doi: 10.7554/eLife.52278. Elife. 2020. PMID: 31913123 Free PMC article.
-
Odor representations in mammalian cortical circuits.Curr Opin Neurobiol. 2010 Jun;20(3):328-31. doi: 10.1016/j.conb.2010.02.004. Epub 2010 Mar 5. Curr Opin Neurobiol. 2010. PMID: 20207132 Free PMC article. Review.
-
Mushroom body memoir: from maps to models.Nat Rev Neurosci. 2003 Apr;4(4):266-75. doi: 10.1038/nrn1074. Nat Rev Neurosci. 2003. PMID: 12671643 Review. No abstract available.
Cited by
-
Intrinsic and Network Mechanisms Constrain Neural Synchrony in the Moth Antennal Lobe.Front Physiol. 2016 Mar 8;7:80. doi: 10.3389/fphys.2016.00080. eCollection 2016. Front Physiol. 2016. PMID: 27014082 Free PMC article.
-
Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.PLoS Comput Biol. 2015 Oct 12;11(10):e1004531. doi: 10.1371/journal.pcbi.1004531. eCollection 2015 Oct. PLoS Comput Biol. 2015. PMID: 26458212 Free PMC article.
-
Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine.Neuron. 2011 Sep 8;71(5):858-68. doi: 10.1016/j.neuron.2011.06.035. Neuron. 2011. PMID: 21903079 Free PMC article.
-
Forward and back: motifs of inhibition in olfactory processing.Neuron. 2010 Aug 12;67(3):357-8. doi: 10.1016/j.neuron.2010.07.023. Neuron. 2010. PMID: 20696373 Free PMC article.
-
Functional consequences of correlated excitatory and inhibitory conductances in cortical networks.J Comput Neurosci. 2010 Jun;28(3):579-94. doi: 10.1007/s10827-010-0240-9. Epub 2010 May 19. J Comput Neurosci. 2010. PMID: 20490645
References
-
- Gross-Isseroff R, Lancet D. Concentration-dependent changes of perceived odor quality. Chem Senses. 1988;13:191–204.
-
- Bhagavan S, Smith BH. Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav. 1997;61:107–117. - PubMed
-
- Stopfer M, Jayaraman V, Laurent G. Intensity versus identity coding in an olfactory system. Neuron. 2003;39:991–1004. - PubMed
-
- Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci. 2002;3:884–895. - PubMed
-
- Kanerva P. Sparse Distributed Memory. Bradford Books; Boston: 1988.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources