Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 23;111(33):10005-11.
doi: 10.1021/jp074056s. Epub 2007 Jul 28.

Supramolecular assembly facilitating adsorbate-induced chiral electronic states in a metal surface

Affiliations

Supramolecular assembly facilitating adsorbate-induced chiral electronic states in a metal surface

Nicolas Bovet et al. J Phys Chem B. .

Abstract

Through the application of optically active second-harmonic generation measurements (OA-SHG) we have demonstrated that the adsorption of amino acids cysteine (HSCH(2)CHNH(2)COOH) and penicillamine (HSC(CH3)(2)CHNH(2)COOH) from solution can induce chiral electronic states in an initially achiral polycrystalline Au film. The chiral induction is strongly dependent upon the pH of the deposition solution; adsorption of penicillamine and cysteine under acidic conditions (pH = 3) induces the same level of optical activity, whereas at pH = 11, the optical activity induced by cysteine is reduced by ca. 50% and penicillamine does not induce optical activity at all. The pH dependence indicates that the presence of interadsorbate hydrogen bonds, and consequently the supramolecular assembly of the adsorbates, facilitates the induction of chiral electronic states in the Au surface. This observation demonstrates that the symmetry properties of the extended structure of the self-assembled layer, and not the local adsorption geometry of the isolated adsorbed moiety, play the lead role in the induction of chiral metallic electronic states. The dependence of the chiral induction on COOH groups is identical to that observed in studies of optical activity in chiral thiol-protected nanoparticles, suggesting a common mechanism for the chiral perturbation in extended films and nanoparticles.

PubMed Disclaimer

LinkOut - more resources