Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun 12;4(2):114-33.
doi: 10.1088/1478-3975/4/2/005.

Ab initio phenomenological simulation of the growth of large tumor cell populations

Affiliations
Free article

Ab initio phenomenological simulation of the growth of large tumor cell populations

Roberto Chignola et al. Phys Biol. .
Free article

Abstract

In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this way we obtain growth curves that match quite well those observed in vitro with human leukemia cell lines. The model is strongly constrained and returns results that can be directly compared with actual experiments, because it uses parameter values in narrow ranges estimated from experimental data, and in perspective we hope to utilize it to develop in silico studies of the growth of very large tumor cell populations (10(6) cells or more) and to support experimental research. In particular, the program is used here to make predictions on the behavior of cells grown in a glucose-poor medium: these predictions are confirmed by experimental observation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources