Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Jul-Aug;53(4):438-46.
doi: 10.1097/MAT.0b013e3180683b7c.

Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters

Affiliations
Comparative Study

Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters

Guy Mareels et al. ASAIO J. 2007 Jul-Aug.

Abstract

As crucial factors in blood clot formation, shear stress distribution and low flow zones are assessed in different central venous catheter tip designs by using a combined numeric and experimental approach. Computational Fluid Dynamics was validated with Particle Image Velocimetry by comparing simulated and measured velocities and shear strains in three designs of the blood withdrawing arterial lumen: cylindrical and with tip (1) cut straight, (2) cut at an angle, or (3) cut straight with a sleeve entrance. After validation, four additional designs were studied: (4) with two side holes and tip cut straight or (5) at an angle, (6) concentric lumens, and (7) Ash Split-based. In these seven designs, shear stress (SS), blood residence time (RT), and Platelet Lysis Index, which combines the influence of shear stress magnitude and exposure time, were simulated. Concentric catheter was discarded due to highly elevated SS. Ash Split-based design had elevated RT values in the distal tip zone as major inflow occurs through the most proximal side holes, but this is compensated by low average SS. A straight-cut tip and possibly two side holes are preferred when aiming at minimal SS and RT. These data may lead to more patent catheters.

PubMed Disclaimer

Publication types