Long-term enrichment enhances the cognitive behavior of the aging neurogranin null mice without affecting their hippocampal LTP
- PMID: 17671107
- PMCID: PMC1951789
- DOI: 10.1101/lm.636107
Long-term enrichment enhances the cognitive behavior of the aging neurogranin null mice without affecting their hippocampal LTP
Abstract
Neurogranin (Ng), a PKC substrate, is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng caused severe deficits in spatial learning and LTP in the hippocampal CA1 region of mice. These Ng-/- mice also exhibit deficits in the amplification of their hippocampal signaling pathways critical for learning and memory. A short-term exposure to an enriched environment failed to improve their behavioral performances. Here, we showed that a long-term enrichment protocol for the aging mice was beneficial to the Ng-/- as well as Ng+/+ and Ng+/- mice in preventing age-related cognitive decline. Enrichment also caused an increase in the hippocampal CREB level of all three genotypes and Ng level of Ng+/+ and Ng+/- mice, but not that of alphaCaMKII or ERK. Interestingly, hippocampal slices of these enriched aging Ng-/- mice, unlike those of Ng+/+ and Ng+/- mice, did not show enhancement in the high frequency stimulation (HFS)-induced LTP in the CA1 region. It appears that the learning and memory processes in these enriched aging Ng-/- mice do not correlate with the HFS-induced LTP, which is facilitated by Ng. These results demonstrated that long-term enrichment for the aging Ng-/- mice may improve their cognitive function through an Ng-independent plasticity pathway.
Figures
References
-
- Arendash G.W., Garcia M.F., Costa D.A., Cracchiolo J.R., Wefes I.M., Potter H. Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable β-amyloid deposition. Neuroreport. 2004;15:1751–1754. - PubMed
-
- Bach M.E., Barad M., Son H., Zhuo M., Lu Y.F., Shih R., Mansuy I., Hawkins R.D., Kandel E.R. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. 1999;96:5280–5285. - PMC - PubMed
-
- Bennett J.C., McRae P.A., Levy L.J., Frick K.M. Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol. Learn. Mem. 2006;85:139–152. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous