Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;1(1):12-9.
doi: 10.1088/1748-3182/1/1/002. Epub 2006 Apr 6.

Nucleation and growth of apatite by a self-assembled polycrystalline bioceramic

Affiliations

Nucleation and growth of apatite by a self-assembled polycrystalline bioceramic

Robert L Karlinsey et al. Bioinspir Biomim. 2006 Mar.

Abstract

The formation aspects of a polycrystalline self-assembled bioceramic leading to the nucleation of hard-tissue mineral from a supersaturated solution are discussed. Scanning electron imaging and surface-sensitive interrogations of the nucleated mineral indicated the presence of an intermediate amorphous layer encompassing a rather crystalline phase that formed on niobium oxide (Nb(2)O(5)) microstructures. The crystalline phase was identified from Raman spectroscopy as hydroxyapatite (HAP), while the phosphorous-rich amorphous layer is suggested to have the chemical form CaO-P(2)O(5). In addition, the mechanism favoring HAP nucleation is discussed in terms of the (0 0 2) and (0 0 1) diffraction planes of HAP and Nb(2)O(5), respectively. The small mismatch along several lattice dimensions strongly suggests epitaxy as a dominant mode in the heterogeneous nucleation of HAP. Furthermore, the effectiveness of this mode was shown to critically depend on the self-organization of the Nb(2)O(5) microstructures. Because nucleation does not appear to depend solely on the integrity of Nb(2)O(5) crystals, the self-organization of Nb(2)O(5) crystals also contributes significantly to HAP nucleation. Based on our results, we propose the organized arrangement of bioceramic crystals as a new mode for the bioinspiration of hydroxyapatite and other hard-tissue mineral.

PubMed Disclaimer

Publication types

LinkOut - more resources