Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 Oct;133(4):1240-9.
doi: 10.1053/j.gastro.2007.05.053. Epub 2007 Jun 2.

Insight into the circadian clock within rat colonic epithelial cells

Affiliations
Comparative Study

Insight into the circadian clock within rat colonic epithelial cells

Martin Sládek et al. Gastroenterology. 2007 Oct.

Abstract

Background & aims: The gastrointestinal tract exhibits diurnal rhythms in many physiologic functions. These rhythms are driven by food intake but are also preserved during food deprivation, suggesting the presence of endogenous circadian rhythmicity. The aim of the study was to provide insight into the circadian core clock mechanism within the rat colon. Moreover, the potency of a restricted feeding regime to shift the circadian clock in the colon was tested. The question of whether the colonic clock drives circadian expression in NHE3, an electroneutral Na(+)/H(+) exchanger, was also addressed.

Methods: Daily profiles in expression of clock genes Per1, Per2, Cry1, Bmal1, Clock, and Rev-erbalpha, and the NHE3 transporter were examined by reverse transcriptase-polymerase chain reaction and their mRNA levels, as well as PER1 and BMAL1 protein levels, were localized in the colonic epithelium by in situ hybridization and immunocytochemistry, respectively.

Results: Expression of Per1, Per2, Cry1, Bmal1, Clock, Rev-erbalpha, and NHE3, as well as PER1 and BMAL1 protein levels, exhibited circadian rhythmicity in the colon. The rhythms were in phase with those in the liver but phase-delayed relative to the master clock in the suprachiasmatic nucleus. Restricted feeding entrained the clock in the colon, because rhythms in clock genes as well as in NHE3 expression were phase-advanced similarly to the clock in the liver.

Conclusions: The rat colon harbors a circadian clock. The colonic clock is likely to drive rhythmic NHE3 expression. Restricted feeding resets the colonic clock similarly to the clock in the liver.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources