Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 30;448(7157):1058-62.
doi: 10.1038/nature06096. Epub 2007 Aug 5.

Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome

Affiliations

Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome

Yoshiyuki Minegishi et al. Nature. .

Abstract

Hyper-immunoglobulin E syndrome (HIES) is a compound primary immunodeficiency characterized by a highly elevated serum IgE, recurrent staphylococcal skin abscesses and cyst-forming pneumonia, with disproportionately milder inflammatory responses, referred to as cold abscesses, and skeletal abnormalities. Although some cases of familial HIES with autosomal dominant or recessive inheritance have been reported, most cases of HIES are sporadic, and their pathogenesis has remained mysterious for a long time. Here we show that dominant-negative mutations in the human signal transducer and activator of transcription 3 (STAT3) gene result in the classical multisystem HIES. We found that eight out of fifteen unrelated non-familial HIES patients had heterozygous STAT3 mutations, but their parents and siblings did not have the mutant STAT3 alleles, suggesting that these were de novo mutations. Five different mutations were found, all of which were located in the STAT3 DNA-binding domain. The patients' peripheral blood cells showed defective responses to cytokines, including interleukin (IL)-6 and IL-10, and the DNA-binding ability of STAT3 in these cells was greatly diminished. All five mutants were non-functional by themselves and showed dominant-negative effects when co-expressed with wild-type STAT3. These results highlight the multiple roles played by STAT3 in humans, and underline the critical involvement of multiple cytokine pathways in the pathogenesis of HIES.

PubMed Disclaimer

Publication types

MeSH terms