Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells
- PMID: 17676810
- DOI: 10.1021/nl071496m
Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells
Abstract
It has been recently shown that the strength of plasmon coupling between a pair of plasmonic metal nanoparticles falls as a function of the interparticle gap scaled by the particle size with a near-exponential decay trend that is universally independent of nanoparticle size, shape, metal type, or medium dielectric constant. In this letter, we extend this universal scaling behavior to the dielectric core-metal shell nanostructure. By using extended Mie theory simulations of silica core-metal nanoshells, we show that when the shift of the nanoshell plasmon resonance wavelength scaled by the solid nanosphere resonance wavelength is plotted against the shell thickness scaled by the core radius, nanoshells with different dimensions (radii) exhibit the same near-exponential decay. Thus, the nanoshell system becomes physically analogous to the particle-pair system, i.e., the nanoshell plasmon resonance results from the coupling of the inner shell surface (cavity) and the outer shell surface (sphere) plasmons over a separation distance essentially given by the metal shell thickness, which is consistent with the plasmon hybridization model of Prodan, Halas, and Nordlander. By using the universal scaling behavior in the nanoshell system, we propose a simple expression for predicting the dipolar plasmon resonance of a silica-gold nanoshell of given dimensions.
Similar articles
-
The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs.Nano Lett. 2007 Oct;7(10):3227-34. doi: 10.1021/nl071813p. Epub 2007 Aug 31. Nano Lett. 2007. PMID: 17760479
-
Reshaping the plasmonic properties of an individual nanoparticle.Nano Lett. 2009 Dec;9(12):4326-32. doi: 10.1021/nl9025665. Nano Lett. 2009. PMID: 19743871
-
Controlling the phase and amplitude of plasmon sources at a subwavelength scale.Nano Lett. 2009 Jan;9(1):327-31. doi: 10.1021/nl803079s. Nano Lett. 2009. PMID: 19102691
-
Controlled assembly of plasmonic colloidal nanoparticle clusters.Nanoscale. 2011 Apr;3(4):1304-15. doi: 10.1039/c0nr00804d. Epub 2011 Jan 13. Nanoscale. 2011. PMID: 21229160 Review.
-
Controlled arrangement of nanoparticle arrays in block-copolymer domains.Small. 2006 May;2(5):600-11. doi: 10.1002/smll.200500474. Small. 2006. PMID: 17193094 Review.
Cited by
-
Gold Nanourchins Improve Virus Targeting and Plasmonic Coupling for Virus Diagnosis on a Smartphone Platform.ACS Sens. 2022 Dec 23;7(12):3741-3752. doi: 10.1021/acssensors.2c01552. Epub 2022 Dec 1. ACS Sens. 2022. PMID: 36454708 Free PMC article.
-
Enhancement of radiation effect on cancer cells by gold-pHLIP.Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5372-6. doi: 10.1073/pnas.1501628112. Epub 2015 Apr 13. Proc Natl Acad Sci U S A. 2015. PMID: 25870296 Free PMC article.
-
Optimization of the GSH-Mediated Formation of Mesoporous Silica-Coated Gold Nanoclusters for NIR Light-Triggered Photothermal Applications.Nanomaterials (Basel). 2021 Jul 28;11(8):1946. doi: 10.3390/nano11081946. Nanomaterials (Basel). 2021. PMID: 34443777 Free PMC article.
-
Monitoring the size and lateral dynamics of ErbB1 enriched membrane domains through live cell plasmon coupling microscopy.PLoS One. 2012;7(3):e34175. doi: 10.1371/journal.pone.0034175. Epub 2012 Mar 28. PLoS One. 2012. PMID: 22470534 Free PMC article.
-
Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays.Beilstein J Nanotechnol. 2023 Oct 4;14:988-1003. doi: 10.3762/bjnano.14.82. eCollection 2023. Beilstein J Nanotechnol. 2023. PMID: 37822722 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous