Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;75(5 Pt 1):051917.
doi: 10.1103/PhysRevE.75.051917. Epub 2007 May 29.

Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity

Affiliations

Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity

Masahiko Yoshioka et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May.

Abstract

Incorporating the spike-timing-dependent synaptic plasticity (STDP) into a learning rule, we study spatiotemporal learning in analog neural networks. First, we study learning of a finite number of periodic spatiotemporal patterns by deriving the dynamics of the order parameters. When a pattern is retrieved successfully, the order parameters exhibit periodic oscillation. Analyzing this oscillation of the order parameters, we elucidate the relation of the STDP time window to the properties of the retrieval state; the phase of the Fourier transform of the STDP time window determines the retrieval frequency and the time average of the STDP time window crucially affects the storage capacity. We also evaluate the stability of the order parameter oscillation and identify the retrieval state that is stable in single-pattern learning but unstable in multiple-pattern learning even when the retrieval state is independent of a pattern number. To examine the further applicability of the STDP-based learning rule, we also study learning of nonperiodic spatiotemporal Poisson patterns. Our numerical simulations demonstrate that the Poisson patterns are memorized successfully not only in analog neural networks but also in spiking neural networks.

PubMed Disclaimer

Similar articles

Cited by