Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Dec 11:42 Suppl:S181-7.
doi: 10.1016/0006-2952(91)90408-w.

Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria

Affiliations

Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria

B O Lund et al. Biochem Pharmacol. .

Abstract

Mercuric ion (Hg(II)) causes oxidative tissue damage in kidney cortical cells. We studied the in vitro effects of Hg(II) on hydrogen peroxide (H2O2) production by rat kidney mitochondria, a principal intracellular target of Hg(II). In mitochondria supplemented with a respiratory chain substrate (succinate or malate/glutamate) and an electron transport inhibitor (antimycin A (AA) or rotenone), Hg(II) (30 nmol/mg protein) increased H2O2 formation approximately 4-fold at the ubiquinone-cytochrome b region (AA-inhibited) and 2-fold at the NADH dehydrogenase region (rotenone-inhibited). Concomitantly, Hg(II) increased iron-dependent lipid peroxidation 3.5-fold at the NADH dehydrogenase region, but only by 25% at the ubiquinone-cytochrome b region. The mitochondrial concentration of reduced glutathione (GSH) decreased both with incubation time and Hg(II) concentration. Hg(II), at a concentration of 12 nmol/mg protein, caused almost complete depletion of measurable GSH in substrate-supplemented mitochondria after a 30-min incubation. In electron transport-inhibited mitochondria, Hg(II) caused greater depletion of GSH in rotenone-inhibited than in AA-inhibited mitochondria, consistent with the effects of Hg(II) on lipid peroxidation. These results suggest that Hg(II) at low concentrations depletes mitochondrial GSH and enhances H2O2 formation in kidney mitochondria under conditions of impaired respiratory chain electron transport. The increased H2O2 formation by Hg(II) may lead to oxidative tissue damage, such as lipid peroxidation, observed in mercury-induced nephrotoxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources