Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications
- PMID: 17683334
- DOI: 10.1111/j.1742-4658.2007.05954.x
Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications
Abstract
Current theories agree that there appears to be no unique feature responsible for the remarkable heat stability properties of hyperthermostable proteins. A concerted action of structural, dynamic and other physicochemical attributes are utilized to ensure the delicate balance between stability and functionality of proteins at high temperatures. We have thoroughly screened the literature for hyperthermostable enzymes with optimal temperatures exceeding 100 degrees C that can potentially be employed in multiple biotechnological and industrial applications and to substitute traditionally used, high-cost engineered mesophilic/thermophilic enzymes that operate at lower temperatures. Furthermore, we discuss general methods of enzyme immobilization and suggest specific strategies to improve thermal stability, activity and durability of hyperthermophilic enzymes.
Similar articles
-
Stabilization of free and immobilized enzymes using hyperthermophilic chaperonin.J Biosci Bioeng. 2006 Feb;101(2):131-6. doi: 10.1263/jbb.101.131. J Biosci Bioeng. 2006. PMID: 16569608
-
Thermophilic enzymes and their biotechnological potential.Microbiologia. 1993 Dec;9(2):77-89. Microbiologia. 1993. PMID: 8172694 Review.
-
Subunit interfaces of oligomeric hyperthermophilic enzymes display enhanced compactness.Int J Biol Macromol. 2009 May 1;44(4):353-60. doi: 10.1016/j.ijbiomac.2009.02.002. Epub 2009 Feb 13. Int J Biol Macromol. 2009. PMID: 19428466
-
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.Enzyme Microb Technol. 2011 Sep 10;49(4):326-46. doi: 10.1016/j.enzmictec.2011.06.023. Epub 2011 Jul 6. Enzyme Microb Technol. 2011. PMID: 22112558 Review.
-
Structural adaptation of the subunit interface of oligomeric thermophilic and hyperthermophilic enzymes.Comput Biol Chem. 2009 Apr;33(2):137-48. doi: 10.1016/j.compbiolchem.2008.08.003. Epub 2008 Aug 31. Comput Biol Chem. 2009. PMID: 18845483
Cited by
-
Identification and characterization of MalA in the maltose/maltodextrin operon of Sulfolobus acidocaldarius DSM639.J Bacteriol. 2013 Apr;195(8):1789-99. doi: 10.1128/JB.01713-12. Epub 2013 Feb 8. J Bacteriol. 2013. PMID: 23396915 Free PMC article.
-
Thermal stabilization of an endoglucanase by cyclization.Appl Biochem Biotechnol. 2012 Aug;167(7):2039-53. doi: 10.1007/s12010-012-9674-z. Epub 2012 Jun 1. Appl Biochem Biotechnol. 2012. PMID: 22653681 Free PMC article.
-
Structural analyses of adenylate kinases from Antarctic and tropical fishes for understanding cold adaptation of enzymes.Sci Rep. 2017 Nov 22;7(1):16027. doi: 10.1038/s41598-017-16266-9. Sci Rep. 2017. PMID: 29167503 Free PMC article.
-
Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology.Bioengineered. 2013 May-Jun;4(3):126-9. doi: 10.4161/bioe.22649. Epub 2012 Oct 30. Bioengineered. 2013. PMID: 23111319 Free PMC article.
-
Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability.Struct Dyn. 2019 Mar 25;6(2):024702. doi: 10.1063/1.5089707. eCollection 2019 Mar. Struct Dyn. 2019. PMID: 31111079 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources