In vivo effects of bisphenol A in laboratory rodent studies
- PMID: 17683900
- PMCID: PMC2151845
- DOI: 10.1016/j.reprotox.2007.06.004
In vivo effects of bisphenol A in laboratory rodent studies
Abstract
Concern is mounting regarding the human health and environmental effects of bisphenol A (BPA), a high-production-volume chemical used in synthesis of plastics. We have reviewed the growing literature on effects of low doses of BPA, below 50 mg/(kg day), in laboratory exposures with mammalian model organisms. Many, but not all, effects of BPA are similar to effects seen in response to the model estrogens diethylstilbestrol and ethinylestradiol. For most effects, the potency of BPA is approximately 10-1000-fold less than that of diethylstilbestrol or ethinylestradiol. Based on our review of the literature, a consensus was reached regarding our level of confidence that particular outcomes occur in response to low dose BPA exposure. We are confident that adult exposure to BPA affects the male reproductive tract, and that long lasting, organizational effects in response to developmental exposure to BPA occur in the brain, the male reproductive system, and metabolic processes. We consider it likely, but requiring further confirmation, that adult exposure to BPA affects the brain, the female reproductive system, and the immune system, and that developmental effects occur in the female reproductive system.
Figures
References
-
- Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36(10):2149–73. - PubMed
-
- Burridge E. Bisphenol A: Product Profile. Eur Chem News. 2003 April 14-20;:17.
-
- Kawagoshi Y, Fujita Y, Kishi I, Fukunaga I. Estrogenic chemicals and estrogenic activity in leachate from municipal waste landfill determined by yeast two-hybrid assay. J Environ Monitoring. 2003;5(2):269–74. - PubMed
-
- Coors A, Jones PD, Giesy JP, Ratte HT. Removal of estrogenic activity from municipal waste landfill leachate assessed with a bioassay based on reporter gene expression. Environ Sci Technol. 2003;37(15):3430–4. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources