Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;9(9):2175-88.
doi: 10.1111/j.1462-2920.2007.01331.x.

Novel hopanoid cyclases from the environment

Affiliations

Novel hopanoid cyclases from the environment

Ann Pearson et al. Environ Microbiol. 2007 Sep.

Abstract

Hopanoids are ubiquitous isoprenoid lipids found in modern biota, in recent sediments and in low-maturity sedimentary rocks. Because these lipids primarily are derived from bacteria, they are used as proxies to help decipher geobiological communities. To date, much of the information about sources of hopanoids has come from surveys of culture collections, an approach that does not address the vast fraction of prokaryotic communities that remains uncharacterized. Here we investigated the phylogeny of hopanoid producers using culture-independent methods. We obtained 79 new sequences of squalene-hopene cyclase genes (sqhC) from marine and lacustrine bacterioplankton and analysed them along with all 31 sqhC fragments available from existing metagenomics libraries. The environmental sqhCs average only 60% translated amino acid identity to their closest relatives in public databases. The data imply that the sources of these important geologic biomarkers remain largely unknown. In particular, genes affiliated with known cyanobacterial sequences were not detected in the contemporary environments analysed here, yet the geologic record contains abundant hopanoids apparently of cyanobacterial origin. The data also suggest that hopanoid biosynthesis is uncommon: < 10% of bacterial species may be capable of producing hopanoids. A better understanding of the contemporary distribution of hopanoid biosynthesis may reveal fundamental insight about the function of these compounds, the organisms in which they are found, and the environmental signals preserved in the sedimentary record.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources