Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 8;8(1):59.
doi: 10.1186/1465-9921-8-59.

Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery

Affiliations

Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery

Craig P Hersh et al. Respir Res. .

Abstract

Background: In the National Emphysema Treatment Trial (NETT), marked variability in response to lung volume reduction surgery (LVRS) was observed. We sought to identify genetic differences which may explain some of this variability.

Methods: In 203 subjects from the NETT Genetics Ancillary Study, four outcome measures were used to define response to LVRS at six months: modified BODE index, post-bronchodilator FEV1, maximum work achieved on a cardiopulmonary exercise test, and University of California, San Diego shortness of breath questionnaire. Sixty-four single nucleotide polymorphisms (SNPs) were genotyped in five genes previously shown to be associated with chronic obstructive pulmonary disease susceptibility, exercise capacity, or emphysema distribution.

Results: A SNP upstream from glutathione S-transferase pi (GSTP1; p = 0.003) and a coding SNP in microsomal epoxide hydrolase (EPHX1; p = 0.02) were each associated with change in BODE score. These effects appeared to be strongest in patients in the non-upper lobe predominant, low exercise subgroup. A promoter SNP in EPHX1 was associated with change in BODE score (p = 0.008), with the strongest effects in patients with upper lobe predominant emphysema and low exercise capacity. One additional SNP in GSTP1 and three additional SNPs in EPHX1 were associated (p < 0.05) with additional LVRS outcomes. None of these SNP effects were seen in 166 patients randomized to medical therapy.

Conclusion: Genetic variants in GSTP1 and EPHX1, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Frequency distributions of changes in outcomes at six months in 203 lung volume reduction surgery patients in the NETT Genetics Ancillary Study. BODE = Body mass index, airflow Obstruction Dyspnea Exercise tolerance; FEV1= forced expiratory volume in 1 second; CPET = cardiopulmonary exercise test; UCSD SOBQ = University of California, San Diego shortness of breath questionnaire
Figure 2
Figure 2
Effect of GSTP1 rs612020 polymorphism in patient subgroups defined by emphysema distribution and baseline exercise capacity. Six month change in BODE score is shown. The grey box represents the interquartile range, and the black line marks the median. One individual with T/T genotype has been removed for clarity of presentation.
Figure 3
Figure 3
Effect of EPHX1 rs3753658 promoter polymorphism in patient subgroups defined by emphysema distribution and baseline exercise capacity. Six month change in BODE score is shown. The grey box represents the interquartile range, and the black line marks the median. Three individuals with T/T genotype have been removed for clarity of presentation.

Similar articles

Cited by

References

    1. Fishman A, Martinez F, Naunheim K, Piantadosi S, Wise R, Ries A, Weinmann G, Wood DE. A randomized trial comparing lung-volume-reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003;348:2059–2073. doi: 10.1056/NEJMoa030287. - DOI - PubMed
    1. National Emphysema Treatment Trial Research Group Patients at high risk of death after lung-volume-reduction surgery. N Engl J Med. 2001;345:1075–1083. doi: 10.1056/NEJMoa11798. - DOI - PubMed
    1. Celedon JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL, Reilly JJ, Kwiatkowski DJ, Chapman HA, Laird N, Sylvia JS, Hernandez M, Speizer FE, Weiss ST, Silverman EK. The transforming growth factor-{beta}1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD) Hum Mol Genet. 2004;13:1649–1656. doi: 10.1093/hmg/ddh171. - DOI - PubMed
    1. Demeo DL, Mariani TJ, Lange C, Srisuma S, Litonjua AA, Celedon JC, Lake SL, Reilly JJ, Chapman HA, Mecham BH, Haley KJ, Sylvia JS, Sparrow D, Spira AE, Beane J, Pinto-Plata V, Speizer FE, Shapiro SD, Weiss ST, Silverman EK. The SERPINE2 Gene Is Associated with Chronic Obstructive Pulmonary Disease. Am J Hum Genet. 2006;78:253–264. doi: 10.1086/499828. - DOI - PMC - PubMed
    1. Hersh CP, Demeo DL, Lange C, Litonjua AA, Reilly JJ, Kwiatkowski D, Laird N, Sylvia JS, Sparrow D, Speizer FE, Weiss ST, Silverman EK. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;33:71–78. doi: 10.1165/rcmb.2005-0073OC. - DOI - PMC - PubMed

Publication types