Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;98(4):2483-7.
doi: 10.1152/jn.00716.2007. Epub 2007 Aug 8.

Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells

Affiliations
Free article

Localization of amiloride-sensitive sodium current and voltage-gated calcium currents in rat fungiform taste cells

Albertino Bigiani et al. J Neurophysiol. 2007 Oct.
Free article

Abstract

Recent studies have shown that taste cells transducing bitter, sweet, and umami stimuli do not possess high-threshold voltage-gated calcium channels required for synaptic transmission at conventional synapses, suggesting some sort of signal processing inside taste buds prior to the activation of nerve endings. To evaluate whether this is a general paradigm for the physiology of taste reception, we studied the transduction pathway underlying the detection of sodium ions (salty stimulus). In laboratory rodents, Na(+) is thought to be transduced, at least in part, through amiloride-sensitive sodium channels (ASSCs). Therefore we used the patch-clamp techniques to analyze the occurrence pattern of amiloride-sensitive sodium currents and voltage-gated calcium currents (both low-voltage-activated T-type current and high-voltage-activated L-type current) among taste cells in rat fungiform papillae. Because taste cells turnover, we focused our attention on cells possessing large voltage-gated sodium currents, a sign of "mature" cells. We found that cells expressing functional ASSCs either did not possess any calcium currents or exhibited only T-type calcium currents, which is believed to play a role in repetitive firing. On the contrary, cells lacking functional ASSCs were endowed with L-type calcium currents, which are thought to mediate calcium influx required for neurotransmitter exocytosis. Therefore our data suggest that sodium-detecting cells are unlikely to use conventional synaptic communication to transfer taste information to nerve endings. Our findings on sodium taste detection support the recent model of taste transduction, involving separate groups of taste cells: chemosensitive cells and cells forming conventional synapses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources