Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Sep;18(9):2439-46.
doi: 10.1681/ASN.2007020149. Epub 2007 Aug 8.

Angiotensin II-induced reactive oxygen species and the kidney

Affiliations
Review

Angiotensin II-induced reactive oxygen species and the kidney

Anja Sachse et al. J Am Soc Nephrol. 2007 Sep.

Abstract

Angiotensin II (AngII) is an important mediator in renal injury. Accumulating evidence suggests that AngII stimulates intracellular formation of reactive oxygen species (ROS) such as the superoxide anion and hydrogen peroxide. AngII activates several subunits of the membrane-bound multicomponent NAD(P)H oxidase and also increases ROS formation in the mitochondria. Some of these effects may be induced by aldosterone and not directly by AngII. The superoxide anion and hydrogen peroxide influence other downstream signaling pathways, such as transcription factors, tyrosine kinases/phosphatases, ion channels, and mitogen-activated protein kinases. Through these signaling pathways, ROS have distinct functional effects on renal cells. They are transducers of cell growth, apoptosis, and cell migration and affect expression of inflammatory and extracellular matrix genes. For example, AngII-mediated expression of p27(Kip1), a cell-cycle regulatory protein, and induction of tubular hypertrophy depend on the generation of ROS. The effects of ROS generated within different renal cells ultimately depend on the locally generated concentrations and the balance of pro- and antioxidant pathways. Although the concept that AngII mediates oxidative stress in the kidney has been validated in experimental models, the exact role is still incompletely understood in human renal diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources