Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides
- PMID: 17687573
- DOI: 10.1007/s00775-007-0279-x
Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides
Abstract
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.
Similar articles
-
An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides.J Biol Chem. 2001 Apr 20;276(16):13178-85. doi: 10.1074/jbc.M010965200. Epub 2001 Jan 26. J Biol Chem. 2001. PMID: 11278798
-
The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.Biochim Biophys Acta. 2015 Jun;1853(6):1335-49. doi: 10.1016/j.bbamcr.2014.09.021. Epub 2014 Sep 28. Biochim Biophys Acta. 2015. PMID: 25268953 Free PMC article. Review.
-
Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli.FEBS J. 2008 Nov;275(22):5678-89. doi: 10.1111/j.1742-4658.2008.06694.x. FEBS J. 2008. PMID: 18959753
-
The biosynthesis of the molybdenum cofactors in Escherichia coli.Environ Microbiol. 2020 Jun;22(6):2007-2026. doi: 10.1111/1462-2920.15003. Epub 2020 Apr 6. Environ Microbiol. 2020. PMID: 32239579 Review.
-
Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1086-101. doi: 10.1016/j.bbabio.2012.11.007. Epub 2012 Nov 29. Biochim Biophys Acta. 2013. PMID: 23201473 Review.
Cited by
-
The biosynthesis of the molybdenum cofactors.J Biol Inorg Chem. 2015 Mar;20(2):337-47. doi: 10.1007/s00775-014-1173-y. Epub 2014 Jul 1. J Biol Inorg Chem. 2015. PMID: 24980677
-
The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria.Coord Chem Rev. 2011 May 1;255(9-10):1129-1144. doi: 10.1016/j.ccr.2010.12.003. Coord Chem Rev. 2011. PMID: 21528011 Free PMC article.
-
Comparative Genomics and Evolution of Molybdenum Utilization.Coord Chem Rev. 2011 May;255(9-10):1206-1217. doi: 10.1016/j.ccr.2011.02.016. Coord Chem Rev. 2011. PMID: 22451726 Free PMC article.
-
Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase.J Bacteriol. 2011 Mar;193(5):1229-36. doi: 10.1128/JB.01057-10. Epub 2010 Dec 30. J Bacteriol. 2011. PMID: 21193613 Free PMC article.
-
The mononuclear molybdenum enzymes.Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28. Chem Rev. 2014. PMID: 24467397 Free PMC article. Review. No abstract available.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources