Second-order analysis of inhomogeneous spatial point processes using case-control data
- PMID: 17688507
- DOI: 10.1111/j.1541-0420.2006.00683.x
Second-order analysis of inhomogeneous spatial point processes using case-control data
Abstract
Methods for the statistical analysis of stationary spatial point process data are now well established, methods for nonstationary processes less so. One of many sources of nonstationary point process data is a case-control study in environmental epidemiology. In that context, the data consist of a realization of each of two spatial point processes representing the locations, within a specified geographical region, of individual cases of a disease and of controls drawn at random from the population at risk. In this article, we extend work by Baddeley, Møller, and Waagepetersen (2000, Statistica Neerlandica54, 329-350) concerning estimation of the second-order properties of a nonstationary spatial point process. First, we show how case-control data can be used to overcome the problems encountered when using the same data to estimate both a spatially varying intensity and second-order properties. Second, we propose a semiparametric method for adjusting the estimate of intensity so as to take account of explanatory variables attached to the cases and controls. Our primary focus is estimation, but we also propose a new test for spatial clustering that we show to be competitive with existing tests. We describe an application to an ecological study in which juvenile and surviving adult trees assume the roles of controls and cases.
Similar articles
-
Cluster pattern detection in spatial data based on Monte Carlo inference.Biom J. 2007 Aug;49(4):505-19. doi: 10.1002/bimj.200610326. Biom J. 2007. PMID: 17638287
-
Second-order analysis of spatial clustering for inhomogeneous populations.Biometrics. 1991 Sep;47(3):1155-63. Biometrics. 1991. PMID: 1742435
-
Inference for clustered inhomogeneous spatial point processes.Biometrics. 2009 Jun;65(2):423-30. doi: 10.1111/j.1541-0420.2008.01070.x. Epub 2008 May 18. Biometrics. 2009. PMID: 18565167
-
[Statistical models for spatial analysis in parasitology].Parassitologia. 2004 Jun;46(1-2):75-8. Parassitologia. 2004. PMID: 15305691 Review. Italian.
-
Explorative statistical analysis of planar point processes in microscopy.J Microsc. 2005 Dec;220(Pt 3):131-9. doi: 10.1111/j.1365-2818.2005.01521.x. J Microsc. 2005. PMID: 16363997 Review.
Cited by
-
A general framework for the distance-decay of similarity in ecological communities.Ecol Lett. 2008 Sep;11(9):904-17. doi: 10.1111/j.1461-0248.2008.01202.x. Epub 2008 May 20. Ecol Lett. 2008. PMID: 18494792 Free PMC article.
-
The association between fine particulate matter (PM2.5) and chronic kidney disease using electronic health record data in urban Minnesota.J Expo Sci Environ Epidemiol. 2022 Jul;32(4):583-589. doi: 10.1038/s41370-021-00351-3. Epub 2021 Jun 14. J Expo Sci Environ Epidemiol. 2022. PMID: 34127789 Free PMC article.
-
Consistent inconsistencies in braking: a spatial analysis.Interface Focus. 2021 Aug 13;11(5):20200058. doi: 10.1098/rsfs.2020.0058. eCollection 2021 Oct 6. Interface Focus. 2021. PMID: 34938429 Free PMC article.
-
Exploratory Spatial Analysis of in vitro Respiratory Syncytial Virus Co-infections.Viruses. 2010 Dec;2(12):2782-802. doi: 10.3390/v2122782. Epub 2010 Dec 22. Viruses. 2010. PMID: 21994640 Free PMC article.
-
A new estimation approach for combining epidemiological data from multiple sources.J Am Stat Assoc. 2014 Jan 1;109(505):11-23. doi: 10.1080/01621459.2013.870904. J Am Stat Assoc. 2014. PMID: 24683281 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources