A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data
- PMID: 17689035
- PMCID: PMC2196217
- DOI: 10.1016/j.ijrobp.2007.04.077
A nomogram to predict radiation pneumonitis, derived from a combined analysis of RTOG 9311 and institutional data
Abstract
Purpose: To test the Washington University (WU) patient dataset, analysis of which suggested that superior-to-inferior tumor position, maximum dose, and D35 (minimum dose to the hottest 35% of the lung volume) were valuable to predict radiation pneumonitis (RP), against the patient database from Radiation Therapy Oncology Group (RTOG) trial 9311.
Methods and materials: The entire dataset consisted of 324 patients receiving definitive conformal radiotherapy for non-small-cell lung cancer (WU = 219, RTOG 9311 = 129). Clinical, dosimetric, and tumor location parameters were modeled to predict RP in the individual datasets and in a combined dataset. Association quality with RP was assessed using Spearman's rank correlation (r) for univariate analysis and multivariate analysis; comparison between subgroups was tested using the Wilcoxon rank sum test.
Results: The WU model to predict RP performed poorly for the RTOG 9311 data. The most predictive model in the RTOG 9311 dataset was a single-parameter model, D15 (r = 0.28). Combining the datasets, the best derived model was a two-parameter model consisting of mean lung dose and superior-to-inferior gross tumor volume position (r = 0.303). An equation and nomogram to predict the probability of RP was derived using the combined patient population.
Conclusions: Statistical models derived from a large pool of candidate models resulted in well-tuned models for each subset (WU or RTOG 9311), which did not perform well when applied to the other dataset. However, when the data were combined, a model was generated that performed well on each data subset. The final model incorporates two effects: greater risk due to inferior lung irradiation, and greater risk for increasing normal lung mean dose. This formula and nomogram may aid clinicians during radiation treatment planning for lung cancer.
Conflict of interest statement
Conflict of Interest Statement
No conflict of interest exists between the material contained within this manuscript and the authors of this manuscript.
Figures







References
-
- Graham MV, et al. Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC) International Journal of Radiation Oncology, Biology, Physics. 1999;45:323–329. - PubMed
-
- Hernando M, et al. Radiation-induced pulmonary toxicity: A dose-volume histogram analysis in 201 patients with lung cancer. International Journal of Radiation Oncology, Biology, Physics. 2001;51(3):650–659. - PubMed
-
- Kwa SLS, et al. Radiation pneumonitis as a function of mean dose: an analysis of pooled data of 540 patients. International Journal of Radiation Oncology, Biology, Physics. 1998;42:1–9. - PubMed
-
- Seppenwoold Y, et al. Comparing different NTCP models that predict the incidence of radiation pneumonitis. International Journal of Radiation Oncology, Biology, Physics. 2003;55(3):724–735. - PubMed
-
- Bradley J, et al. Toxicity and outcome results of RTOG 9311: a phase I-II dose escalation study using three-dimensional conformal radiation therapy in patients with inoperable non-small cell lung carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2005;61(2):318–328. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical