Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Mar;67(3):178-88.
doi: 10.1016/j.ijpsycho.2007.06.008. Epub 2007 Aug 9.

Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla

Affiliations
Comparative Study

Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla

Karen Mullinger et al. Int J Psychophysiol. 2008 Mar.

Abstract

Although the focus of attention on data degradation during simultaneous MRI/EEG recording has to date largely been upon EEG artefacts, the presence of the conducting wires and electrodes of the EEG recording system also causes some degradation of MRI data quality. This may result from magnetic susceptibility effects which lead to signal drop-out and image distortion, as well as the perturbation of the radiofrequency fields, which can cause local signal changes and a global reduction in the signal to noise ratio (SNR) of magnetic resonance images. Here, we quantify the effect of commercially available 32 and 64 electrode caps on the quality of MR images obtained in scanners operating at magnetic fields of 1.5, 3 and 7 T, via the use of MR-based, field-mapping techniques and analysis of the SNR in echo planar image time series. The electrodes are shown to be the dominant source of magnetic field inhomogeneity, although the localised nature of the field perturbation that they produce means that the effect on the signal intensity from the brain is not significant. In the particular EEG caps investigated here, RF inhomogeneity linked to the longer ECG and EOG leads causes some reduction in the signal intensity in images obtained at 3 and 7 T. Measurements of the standard deviation of white matter signal in EPI time series indicates that the introduction of the EEG cap produces a small reduction in the image signal to noise ratio, which increases with the number of electrodes used.

PubMed Disclaimer

Publication types

LinkOut - more resources