Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination
- PMID: 17690189
- PMCID: PMC1959497
- DOI: 10.2353/ajpath.2007.070220
Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination
Erratum in
- Am J Pathol. 2009 May;174(5):1981-2
Abstract
AvrA is a newly described bacterial effector existing in Salmonella. Here, we test the hypothesis that AvrA is a deubiquitinase that removes ubiquitin from two inhibitors of the nuclear factor-kappaB (NF-kappaB) pathway, IkappaBalpha and beta-catenin, thereby inhibiting the inflammatory responses of the host. The role of AvrA was assessed in intestinal epithelial cell models and in mouse models infected with AvrA-deficient and -sufficient Salmonella strains. We also purified AvrA and AvrA mutant proteins and characterized their deubiquitinase activity in a cell-free system. We investigated target gene and inflammatory cytokine expression, as well as effects on epithelial cell proliferation and apoptosis induced by AvrA-deficient and -sufficient bacterial strains in vivo. Our results show that AvrA blocks degradation of IkappaBalpha and beta-catenin in epithelial cells. AvrA deubiquitinates IkappaBalpha, which blocks its degradation and leads to the inhibition of NF-kappaB activation. Target genes of the NF-kappaB pathway, such as interleukin-6, were correspondingly down-regulated during bacterial infection with Salmonella expressing AvrA. AvrA also deubiquitinates and thus blocks degradation of beta-catenin. Target genes of the beta-catenin pathway, such as c-myc and cyclinD1, were correspondingly up-regulated with AvrA expression. Increased beta-catenin further negatively regulates the NF-kappaB pathway. Our findings suggest an important role for AvrA in regulating host inflammatory responses through NF-kappaB and beta-catenin pathways.
Figures
References
-
- Streckel W, Wolff AC, Prager R, Tietze E, Tschèape H. Expression profiles of effector proteins SopB, SopD1, SopE1, and AvrA differ with systemic, enteric, and epidemic strains of Salmonella enterica. Mol Nutr Food Res. 2004;48:496–503. - PubMed
-
- Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science. 2000;290:1594–1597. - PubMed
-
- Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, Rao AS, Madara JL. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science. 2000;289:1560–1563. - PubMed
-
- Collier-Hyams LS, Zeng H, Sun J, Tomlinson AD, Bao ZQ, Chen H, Madara JL, Orth K, Neish AS. Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-κB pathway. J Immunol. 2002;169:2846–2850. - PubMed
-
- Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–288. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
