Characterization of a recurrent novel large duplication in the cystic fibrosis transmembrane conductance regulator gene
- PMID: 17690208
- PMCID: PMC1975096
- DOI: 10.2353/jmoldx.2007.060141
Characterization of a recurrent novel large duplication in the cystic fibrosis transmembrane conductance regulator gene
Abstract
Recently, DNA rearrangements in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been described with increasing frequency. These large DNA rearrangements are not detected using conventional methods of DNA sequencing, single-strand conformational polymorphism, or denaturing high-performance liquid chromatography. We and others have described methods to detect such rearrangements in the CFTR gene. With one exception, all rearrangements reported thus far are single or multiple exon deletions, whereas only one report has described a large duplication. We describe here the detection and characterization of a novel large duplication in the CFTR gene. This duplication, referred to as gIVS6a + 415_IVS10 + 2987Dup26817bp, was detected in a classic CF female patient whose other mutation was DeltaF508. The duplication was inherited paternally. The duplication encompassed exons 6b to 10 and occurred on the IVS8-11TG/IVS8-7T/G1540 haplotype. This large duplication is predicted to result in the production of a truncated CFTR protein lacking the terminal part of NBD1 domain and beyond and thus can be considered a null allele. The combination of the DeltaF508 and gIVS6a + 415_IVS10 + 2987Dup26817bp mutation probably causes the severe CF phenotype in this patient. We designed a simple polymerase chain reaction test to detect the duplication, and we further detected the same duplication from another independent laboratory. The duplication breakpoint is identical in all three patients, suggesting a likely founder mutation.
Figures



References
-
- Cutting GR. Cystic fibrosis. Rimoin DL, Connor JM, Pyeritz RE, Korf B, editors. London: Churchill Livingstone,; Principles and Practice of Medical Genetics. 2002:2685–2717.
-
- McGinniss MJ, Chen C, Redman JB, Buller A, Quan F, Peng M, Giusti R, Hantash FM, Huang D, Sun W, Strom CM. Extensive sequencing of the CFTR gene: lessons learned from the first 157 patient samples. Hum Genet. 2005;118:331–338. - PubMed
-
- Hantash FM, Redman JB, Starn K, Anderson B, Buller A, McGinniss MJ, Quan F, Peng M, Sun W, Strom CM. Novel and recurrent rearrangements in the CFTR gene: clinical and laboratory implications for cystic fibrosis screening. Hum Genet. 2006;119:126–136. - PubMed
-
- Audrézet MP, Chen JM, Raguénès O, Chuzhanova N, Giteau K, Le Marechal C, Quéré I, Cooper DN, Férec C. Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat. 2004;23:343–357. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical