Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;97(Pt 2):321-8.
doi: 10.1007/978-3-211-33081-4_35.

Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy

Affiliations
Review

Anatomical and physiological basis and mechanism of action of neurostimulation for epilepsy

K Vonck et al. Acta Neurochir Suppl. 2007.

Abstract

Neurostimulation is an emerging treatment for neurological diseases. Different types of neurostimulation exist mainly depending of the part of the nervous system that is being affected and the way this stimulation is being administered. Vagus nerve stimulation (VNS) is a neurophysiological treatment for patients with medically or surgically refractory epilepsy. Over 30,000 patients have been treated with VNS. No clear predictive factors for responders have been identified. To date, the precise mechanism of action remains to be elucidated. Better insight in the mechanism of action may identify seizure types or syndromes that respond better to VNS and may guide the search for optimal stimulation parameters and finally improve clinical efficacy. Deep brain stimulation (DBS) has been used extensively as a treatment for movement disorders. Several new indications such as obsessive compulsive behaviour and cluster headache are being investigated with promising results. The vast progress in biotechnology along with the experience in other neurological diseases in the past ten years has led to a renewed interest in intracerebral stimulation for epilepsy. Epilepsy centers around the world have recently reinitiated trials with deep brain stimulation in different intracerebral structures such as the thalamus, the hippocampus and the subthalamic nucleus.

PubMed Disclaimer

Similar articles

Cited by