Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;97(Pt 2):465-72.
doi: 10.1007/978-3-211-33081-4_53.

Implantable visual prostheses

Affiliations
Review

Implantable visual prostheses

S Thanos et al. Acta Neurochir Suppl. 2007.

Abstract

Visual impairment and blindness is primarily caused by optic neuropathies like injuries and glaucomas, as well as retinopathies like agerelated macular degeneration (MD), systemic diseases like diabetes, hypertonia and hereditary retinitis pigmentosa (RP). These pathological conditions may affect retinal photoreceptors, or retinal pigment epithelium, or particular subsets of retinal neurons, and in particular retinal ganglion cells (RGCs). The RGCs which connect the retina with the brain are unique cells with extremely long axons bridging the distance from the retina to visual relays within the thalamus and midbrain, being therefore vulnerable to heterogeneous pathological conditions along this pathway. When becoming mature, RGCs loose the ability to divide and to regenerate their accidentally or experimentally injured axons. Consequently, any loss of RGCs is irreversible and results to loss of visual function. The advent of micro- and nanotechnology, and the construction of artificial implants prompted to create visual prostheses which aimed at compensating for the loss of visual function in particular cases. The purpose of the present contribution is to review the considerable engineering expertise that is essential to fabricate current visual prostheses in connection with their functional features and applicability to the animal and human eye. In this chapter, 1) Retinal and cortical implants are introduced, with particular emphasis given to the requirements they have to fulfil in order to replace very complex functions like vision. 2) Advanced work on material research is presented both from the technological and from the biocompatibility aspect as prerequisites of any perspectives for implantation. 3) Ultimately, experimental studies are presented showing the shaping of implants, the procedures of testing their biocompatibility and essential modifications to improve the interfaces between technical devices and the biological environment. The review ends by pointing to future perspectives in the rapidly accelerating process of visual prosthetics and in the increasing hope that restoration of the visual system becomes reality.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources