Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 11;23(19):9760-8.
doi: 10.1021/la701233y. Epub 2007 Aug 11.

Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR

Affiliations

Viscoelastic modeling of highly hydrated laminin layers at homogeneous and nanostructured surfaces: quantification of protein layer properties using QCM-D and SPR

Jenny Malmström et al. Langmuir. .

Abstract

The adsorption of proteins at material surfaces is important in applications such as biomaterials, drug delivery, and diagnostics. The interaction of cells with artificial surfaces is mediated through adsorbed proteins, where the type of protein, amount, orientation, and conformation are of consequence for the cell response. Laminin, an important cell adhesive protein that is central in developmental biology, is studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR) to characterize the adsorption of laminin on surfaces of different surface chemistries. The combination of these two techniques allows for the determination of the thickness and effective density of the protein layer as well as the adsorbed mass and viscoelastic properties. We also evaluate the capacity of QCM-D to be used as a quantitative technique on a nanostructured surface, where protein is adsorbed specifically in a nanopattern exploiting PLL-g-PEG as a protein-resistant background. We show that laminin forms a highly hydrated protein layer with different characteristics depending on the underlying substrate. Using a combination of QCM-D and atomic force microscopy (AFM) data from nanostructured surfaces, we model laminin and antibody binding to nanometer-scale patches. A higher amount of laminin was found to adsorb in a thicker layer of a lower effective density in nanopatches compared to equivalent homogeneous surfaces. These results suggest that modeling of QCM-D data of soft viscoelastic layers arranged in nanopatterns may be applied where an independent measure of the "dry" mass is known.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources