Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;54(8):1454-60.
doi: 10.1109/TBME.2007.891932.

Three-dimensional cardiac electrical imaging from intracavity recordings

Affiliations

Three-dimensional cardiac electrical imaging from intracavity recordings

Bin He et al. IEEE Trans Biomed Eng. 2007 Aug.

Abstract

A novel approach is proposed to image 3-D cardiac electrical activity from intracavity electrical recordings with the aid of a catheter. The feasibility and performance were evaluated by computer simulation studies, where a 3-D cellular-automaton heart model and a finite-element thorax volume conductor model were utilized. The finite-element method (FEM) was used to simulate the intracavity recordings induced by a single-site and dual-site pacing protocol. The 3-D ventricular activation sequences as well as the locations of the initial activation sites were inversely estimated by minimizing the dissimilarity between the intracavity potential "measurements" and the model-generated intracavity potentials. Under single-site pacing, the relative error (RE) between the true and estimated activation sequences was 0.03 +/- 0.01 and the localization error (LE) (of the initiation site) was 1.88 +/- 0.92 mm, as averaged over 12 pacing trials when considering 25 microV additive measurement noise using 64 catheter electrodes. Under dual-site pacing, the RE was 0.04 +/- 0.01 over 12 pacing trials and the LE over 24 initial pacing sites was 2.28 +/- 1.15 mm, when considering 25 microV additive measurement noise using 64 catheter electrodes. The proposed 3-D cardiac electrical imaging approach using intracavity electrical recordings was also tested under various simulated conditions and robust inverse solutions obtained. The present promising simulation results suggest the feasibility of obtaining 3-D information of cardiac electrical activity from intracavity recordings. The application of this inverse method has the potential of enhancing electrocardiographic mapping by catheters in electrophysiology laboratories, aiding cardiac resynchronization therapy, and other clinical applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms