Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;100(3):109-13.

[Synthesis of nanoparticles for dental drug delivery systems]

[Article in Hungarian]
Affiliations
  • PMID: 17695047

[Synthesis of nanoparticles for dental drug delivery systems]

[Article in Hungarian]
József Bakó et al. Fogorv Sz. 2007 Jun.

Abstract

Modern drug delivery systems are designed for targeted controlled slow drug release. Up to now polymer based hydrogels have been applied in dentistry, which systems can affect the rate of the release due to their structure. Recently, intensive research for other methods is performed all over the world in order to improve the effectiveness of delivery systems. Nanotechnology is one of the most dynamically developing disciplines and is a powerful tool to increase the bioavailability of drugs. The aim of this work is to synthesise biocompatible nanoparticles by free radical initiated copolymerization of the monomers, 2-hydroxyethyl methacrylate (HEMA) and polyethyleneglycol dimethacrylate (PEGDMA) in aqueous solution, which can support the formation of nanoparticles that can be used as a drug delivery system for dental applications. The polymer-based nanoparticles were prepared via micellar polymerisation, which resulted a well dispersible white powder material. The size of particles was determined by Dynamic Laser Light Scattering (DLS) and Scanning Electron Microscopy (SEM). The size of particles is in range of 50-180 nm, measured by SEM. These values are commensurable with the results obtained by DLS experiments, where two size ranges were observed, as 40 +/- 15 nm and 180 +/- 30 nm. The nanoparticles are suitable for incorporation into a hydrogel matrix and to design new drug delivery devices for dental applications.

PubMed Disclaimer