Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 6;50(18):4431-43.
doi: 10.1021/jm070405v. Epub 2007 Aug 15.

3,17-disubstituted 2-alkylestra-1,3,5(10)-trien-3-ol derivatives: synthesis, in vitro and in vivo anticancer activity

Affiliations

3,17-disubstituted 2-alkylestra-1,3,5(10)-trien-3-ol derivatives: synthesis, in vitro and in vivo anticancer activity

Christian Bubert et al. J Med Chem. .

Abstract

Estradiol-3,17-O,O-bis-sulfamates inhibit steroid sulfatase (STS), carbonic anhydrase (CA), and, when substituted at C-2, cancer cell proliferation and angiogenesis. C-2 Substitution and 17-sulfamate replacement of the estradiol-3,17-O,O-bis-sulfamates were explored with efficient and practical syntheses developed. Evaluation against human cancer cell lines revealed the 2-methyl derivative 27 (DU145 GI(50) = 0.38 microM) as the most active novel bis-sulfamate, while 2-ethyl-17-carbamate derivative 52 (GI(50) = 0.22 microM) proved most active of its series (cf. 2-ethylestradiol-3,17-O,O-bis-sulfamate 4 GI(50) = 0.21 microM). Larger C-2 substituents were deleterious to activity. 2-Methoxy-17-carbamate 50 was studied by X-ray crystallography and was surprisingly 13-fold weaker as an STS inhibitor compared to parent bis-sulfamate 3. The potential of 4 as an orally dosed anti-tumor agent is confirmed using breast and prostate cancer xenografts. In the MDA-MB-231 model, dramatic reduction in tumor growth or regression was observed, with effects sustained after cessation of treatment. 3-O-Sulfamoylated 2-alkylestradiol-17-O-carbamates and sulfamates have considerable potential as anticancer agents.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources