Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep 6;111(35):10583-90.
doi: 10.1021/jp0741556. Epub 2007 Aug 15.

Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}(n) layer-by-layer films

Affiliations

Conductive effect of gold nanoparticles encapsulated inside polyamidoamine (PAMAM) dendrimers on electrochemistry of myoglobin (Mb) in {PAMAM-Au/Mb}(n) layer-by-layer films

Hong Zhang et al. J Phys Chem B. .

Abstract

PAMAM-Au nanocomposites prepared by reduction of HAuCl4 with NaBH4 in the presence of the sixth-generation polyamidoamine (PAMAM) took a unique structure, in which the 2 nm-sized Au nanoparticles were encapsulated in the interior cavities of the PAMAM molecules. The PAMAM-Au nanocomposites as a new type of nanomaterial were assembled layer-by-layer with myoglobin (Mb) into {PAMAM-Au/Mb}n films on solid surfaces, which was confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). The direct electrochemistry of Mb in the films assembled on pyrolytic graphite (PG) electrodes was realized and used to catalyze the reduction of hydrogen peroxide. As compared to {PAMAM/Mb}n films containing no Au nanoparticles, the {PAMAM-Au/Mb}n films showed much better electrochemical and electrocatalytic properties, indicating the conductive effect of Au nanoparticles inside PAMAM on bridging electron transfer between Mb and PG electrodes.

PubMed Disclaimer

Publication types

LinkOut - more resources