Solving da Vinci stereopsis with depth-edge-selective V2 cells
- PMID: 17698163
- PMCID: PMC2086864
- DOI: 10.1016/j.visres.2007.07.003
Solving da Vinci stereopsis with depth-edge-selective V2 cells
Abstract
We propose a new model for da Vinci stereopsis based on a coarse-to-fine disparity energy computation in V1 and disparity-boundary-selective units in V2. Unlike previous work, our model contains only binocular cells, relies on distributed representations of disparity, and has a simple V1-to-V2 feedforward structure. We demonstrate with random-dot stereograms that the V2 stage of our model is able to determine the location and the eye-of-origin of monocularly occluded regions, and improve disparity map computation. We also examine a few related issues. First, we argue that since monocular regions are binocularly defined, they cannot generally be detected by monocular cells. Second, we show that our coarse-to-fine V1 model for conventional stereopsis explains double matching in Panum's limiting case. This provides computational support to the notion that the perceived depth of a monocular bar next to a binocular rectangle may not be da Vinci stereopsis per se [Gillam, B., Cook, M., & Blackburn, S. (2003). Monocular discs in the occlusion zones of binocular surfaces do not have quantitative depth--a comparison with Panum's limiting case. Perception 32, 1009-1019.]. Third, we demonstrate that some stimuli previously deemed invalid have simple, valid geometric interpretations. Our work suggests that studies of da Vinci stereopsis should focus on stimuli more general than the bar-and-rectangle type and that disparity-boundary-selective V2 cells may provide a simple physiological mechanism for da Vinci stereopsis.
Figures













Similar articles
-
A laminar cortical model of stereopsis and three-dimensional surface perception.Vision Res. 2003 Mar;43(7):801-29. doi: 10.1016/s0042-6989(03)00011-7. Vision Res. 2003. PMID: 12639606
-
da Vinci decoded: does da Vinci stereopsis rely on disparity?J Vis. 2012 Nov 1;12(12):2. doi: 10.1167/12.12.2. J Vis. 2012. PMID: 23117672
-
Pictorial cues constrain depth in da Vinci stereopsis.Vision Res. 2006 Jan;46(1-2):91-105. doi: 10.1016/j.visres.2005.09.024. Epub 2005 Nov 3. Vision Res. 2006. PMID: 16271743
-
A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.Spat Vis. 2005;18(5):515-78. doi: 10.1163/156856805774406756. Spat Vis. 2005. PMID: 16312095 Review.
-
The role of monocularly visible regions in depth and surface perception.Vision Res. 2009 Nov;49(22):2666-85. doi: 10.1016/j.visres.2009.06.021. Epub 2009 Jul 3. Vision Res. 2009. PMID: 19577589 Review.
Cited by
-
Natural statistics of depth edges modulate perceptual stability.J Vis. 2020 Aug 3;20(8):10. doi: 10.1167/jov.20.8.10. J Vis. 2020. PMID: 32761107 Free PMC article.
-
First- and second-order contributions to depth perception in anti-correlated random dot stereograms.Sci Rep. 2018 Sep 20;8(1):14120. doi: 10.1038/s41598-018-32500-4. Sci Rep. 2018. PMID: 30237535 Free PMC article.
-
Synchronized audio-visual transients drive efficient visual search for motion-in-depth.PLoS One. 2012;7(5):e37190. doi: 10.1371/journal.pone.0037190. Epub 2012 May 17. PLoS One. 2012. PMID: 22615939 Free PMC article.
-
Unmixing binocular signals.Front Hum Neurosci. 2011 Aug 9;5:78. doi: 10.3389/fnhum.2011.00078. eCollection 2011. Front Hum Neurosci. 2011. PMID: 21886618 Free PMC article.
-
Binocular vision.Vision Res. 2011 Apr 13;51(7):754-70. doi: 10.1016/j.visres.2010.10.009. Epub 2010 Oct 15. Vision Res. 2011. PMID: 20951722 Free PMC article. Review.
References
-
- Anderson BL. The role of partial occlusion in stereopsis. Nature. 1994;367:365–368. - PubMed
-
- Assee A, Qian N. Solving da Vinci Stereopsis with V2 Disparity-Boundary-Selective Cells. Society for Neuroscience Meeting 2006
-
- Cao Y, Grossberg S. A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis. Spat Vis. 2005;18:515–578. - PubMed
-
- Chen Y, Qian N. A coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Comput. 2004;16:1545–1577. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources