Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;28(32):4818-25.
doi: 10.1016/j.biomaterials.2007.07.050. Epub 2007 Aug 14.

Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane

Affiliations

Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane

Yuji Teramura et al. Biomaterials. 2007 Nov.

Abstract

The microencapsulation of islets of Langerhans (islets) in a semipermeable membrane, i.e., the creation of a bioartificial pancreas, has been studied as a safe and simple technique for islet transplantation without the need for immunosuppressive therapy. The total volume of the implant tends to increase after enclosure of the islets in the semipermeable membrane, which limits transplantation sites. Thus, ultra-thin membranes are required for clinical applications. Here, we propose a novel method to encapsulate islets in an ultra-thin membrane of poly(vinyl alcohol) (PVA) anchored to a poly(ethylene glycol) (PEG)-phospholipid conjugate bearing a maleimide group (Mal-PEG-lipids, PEG Mw: 5000) in the cell membranes of islets. When Mal-PEG-lipids were added to an islet suspension, they spontaneously formed a thin layer on cells of the outer layer of islets. The PEG-lipid layer on the islets was covered by a PVA monolayer, and the PVA membrane was further reinforced by using the layer-by-layer method with thiol/disulfide exchange reactions. No practical volume increase in islets was observed after microencapsulation by this method. In addition, encapsulation of the islet surface in PVA membranes did not impair insulin release in response to glucose stimulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources