Cell- and gene-specific regulation of primary target genes by the androgen receptor
- PMID: 17699749
- PMCID: PMC1948856
- DOI: 10.1101/gad.1564207
Cell- and gene-specific regulation of primary target genes by the androgen receptor
Abstract
The androgen receptor (AR) mediates the physiologic and pathophysiologic effects of androgens including sexual differentiation, prostate development, and cancer progression by binding to genomic androgen response elements (AREs), which influence transcription of AR target genes. The composition and context of AREs differ between genes, thus enabling AR to confer multiple regulatory functions within a single nucleus. We used expression profiling of an immortalized human prostate epithelial cell line to identify 205 androgen-responsive genes (ARGs), most of them novel. In addition, we performed chromatin immunoprecipitation to identify 524 AR binding regions and validated in reporter assays the ARE activities of several such regions. Interestingly, 67% of our AREs resided within approximately 50 kb of the transcription start sites of 84% of our ARGs. Indeed, most ARGs were associated with two or more AREs, and ARGs were sometimes themselves linked in gene clusters containing up to 13 AREs and 12 ARGs. AREs appeared typically to be composite elements, containing AR binding sequences adjacent to binding motifs for other transcriptional regulators. Functionally, ARGs were commonly involved in prostate cell proliferation, communication, differentiation, and possibly cancer progression. Our results provide new insights into cell- and gene-specific mechanisms of transcriptional regulation of androgen-responsive gene networks.
Figures







Similar articles
-
Multiple androgen response elements and a Myc consensus site in the androgen receptor (AR) coding region are involved in androgen-mediated up-regulation of AR messenger RNA.Mol Endocrinol. 1999 Nov;13(11):1896-911. doi: 10.1210/mend.13.11.0369. Mol Endocrinol. 1999. PMID: 10551783
-
Identification and functional analysis of consensus androgen response elements in human prostate cancer cells.Biochem Biophys Res Commun. 2004 Dec 24;325(4):1312-7. doi: 10.1016/j.bbrc.2004.10.174. Biochem Biophys Res Commun. 2004. PMID: 15555570
-
Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA.Mol Endocrinol. 1996 Dec;10(12):1582-94. doi: 10.1210/mend.10.12.8961268. Mol Endocrinol. 1996. PMID: 8961268
-
Molecular regulation of androgen action in prostate cancer.J Cell Biochem. 2006 Oct 1;99(2):333-44. doi: 10.1002/jcb.20794. J Cell Biochem. 2006. PMID: 16518832 Review.
-
Androgen receptor enhancer usage and the chromatin regulatory landscape in human prostate cancers.Endocr Relat Cancer. 2019 May;26(5):R267-R285. doi: 10.1530/ERC-19-0032. Endocr Relat Cancer. 2019. PMID: 30865928 Review.
Cited by
-
The novel ciliogenesis regulator DYRK2 governs Hedgehog signaling during mouse embryogenesis.Elife. 2020 Aug 6;9:e57381. doi: 10.7554/eLife.57381. Elife. 2020. PMID: 32758357 Free PMC article.
-
Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.PLoS One. 2015 May 1;10(5):e0125277. doi: 10.1371/journal.pone.0125277. eCollection 2015. PLoS One. 2015. PMID: 25933120 Free PMC article.
-
Transcriptome profiling and proteomic validation reveals targets of the androgen receptor signaling in the BT-474 breast cancer cell line.Clin Proteomics. 2022 May 14;19(1):14. doi: 10.1186/s12014-022-09352-2. Clin Proteomics. 2022. PMID: 35568821 Free PMC article.
-
Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function.J Biol Chem. 2011 Mar 11;286(10):8117-8127. doi: 10.1074/jbc.M110.170720. Epub 2011 Jan 5. J Biol Chem. 2011. PMID: 21212260 Free PMC article.
-
Serum/glucocorticoid-regulated kinase 1 expression in primary human prostate cancers.Prostate. 2012 Feb 1;72(2):157-64. doi: 10.1002/pros.21416. Epub 2011 May 11. Prostate. 2012. PMID: 21563193 Free PMC article.
References
-
- Belperio J.A., Keane M.P., Arenberg D.A., Addison C.L., Ehlert J.E., Burdick M.D., Strieter R.M., Keane M.P., Arenberg D.A., Addison C.L., Ehlert J.E., Burdick M.D., Strieter R.M., Arenberg D.A., Addison C.L., Ehlert J.E., Burdick M.D., Strieter R.M., Addison C.L., Ehlert J.E., Burdick M.D., Strieter R.M., Ehlert J.E., Burdick M.D., Strieter R.M., Burdick M.D., Strieter R.M., Strieter R.M. CXC chemokines in angiogenesis. J. Leukoc. Biol. 2000;68:1–8. - PubMed
-
- Carroll J.S., Liu X.S., Brodsky A.S., Li W., Meyer C.A., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Liu X.S., Brodsky A.S., Li W., Meyer C.A., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Brodsky A.S., Li W., Meyer C.A., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Li W., Meyer C.A., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Meyer C.A., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Szary A.J., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Eeckhoute J., Shao W., Hestermann E.V., Geistlinger T.R., Shao W., Hestermann E.V., Geistlinger T.R., Hestermann E.V., Geistlinger T.R., Geistlinger T.R., et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43. - PubMed
-
- Chang C.S., Kokontis J., Liao S.T., Kokontis J., Liao S.T., Liao S.T. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science. 1988;240:324–326. - PubMed
-
- Chang T.Y., Chang C.C., Lin S., Yu C., Li B.L., Miyazaki A., Chang C.C., Lin S., Yu C., Li B.L., Miyazaki A., Lin S., Yu C., Li B.L., Miyazaki A., Yu C., Li B.L., Miyazaki A., Li B.L., Miyazaki A., Miyazaki A. Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and -2. Curr. Opin. Lipidol. 2001;12:289–296. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials