Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits
- PMID: 17702950
- DOI: 10.1093/cercor/bhm138
Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits
Abstract
Rodent somatosensory cortex contains an isomorphic map of the mystacial whiskers in which each whisker is represented by neuronal populations, or barrels, that are separated from each other by intervening septa. Separate afferent pathways convey somatosensory information to the barrels and septa that represent the input stages for 2 partially segregated circuits that extend throughout the other layers of barrel cortex. Whereas the barrel-related circuits process spatiotemporal information generated by whisker contact with external objects, the septa-related circuits encode the frequency and other kinetic features of active whisker movements. The projection patterns from barrel cortex indicate that information processed by the septa-related circuits is used both separately and in combination with information from the barrel-related circuits to mediate specific functions. According to this theory, outputs from the septal processing stream modulate the brain regions that regulate whisking behavior, whereas both processing streams cooperate with each other to identify external stimuli encountered by passive or active whisker movements. This theoretical view prompts several testable hypotheses about the coordination of neuronal activity during whisking behavior. Foremost among these, motor brain regions that control whisker movements are more strongly coordinated with the septa-related circuits than with the barrel-related circuits.
Similar articles
-
Septal columns in rodent barrel cortex: functional circuits for modulating whisking behavior.J Comp Neurol. 2004 Dec 13;480(3):299-309. doi: 10.1002/cne.20339. J Comp Neurol. 2004. PMID: 15515173
-
Barrels and septa: separate circuits in rat barrels field cortex.J Comp Neurol. 1999 Jun 14;408(4):489-505. J Comp Neurol. 1999. PMID: 10340500
-
Mapping functional connectivity in barrel-related columns reveals layer- and cell type-specific microcircuits.Brain Struct Funct. 2007 Sep;212(2):107-19. doi: 10.1007/s00429-007-0147-z. Epub 2007 Jun 26. Brain Struct Funct. 2007. PMID: 17717691 Review.
-
2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.J Comp Neurol. 1993 Jun 1;332(1):38-58. doi: 10.1002/cne.903320104. J Comp Neurol. 1993. PMID: 8390494
-
The functional organization of the barrel cortex.Neuron. 2007 Oct 25;56(2):339-55. doi: 10.1016/j.neuron.2007.09.017. Neuron. 2007. PMID: 17964250 Review.
Cited by
-
Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex.J Neurosci. 2010 Feb 24;30(8):3082-92. doi: 10.1523/JNEUROSCI.6096-09.2010. J Neurosci. 2010. PMID: 20181605 Free PMC article.
-
Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific.Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16446-50. doi: 10.1073/pnas.0904143106. Epub 2009 Sep 4. Proc Natl Acad Sci U S A. 2009. PMID: 19805318 Free PMC article.
-
Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits.J Neurophysiol. 2012 Jul;108(1):160-74. doi: 10.1152/jn.00142.2012. Epub 2012 Apr 11. J Neurophysiol. 2012. PMID: 22496533 Free PMC article.
-
Cortical hypoexcitation defines neuronal responses in the immediate aftermath of traumatic brain injury.PLoS One. 2013 May 7;8(5):e63454. doi: 10.1371/journal.pone.0063454. Print 2013. PLoS One. 2013. PMID: 23667624 Free PMC article.
-
Another angle on rat somatosensory thalamic barreloids.Front Neurosci. 2009 Sep 15;3(2):164-5. doi: 10.3389/neuro.01.022.2009. eCollection 2009. Front Neurosci. 2009. PMID: 20228861 Free PMC article. No abstract available.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources