Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct;30(5):827.
doi: 10.1007/s10545-007-0612-0. Epub 2007 Aug 20.

Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency

Affiliations

Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency

A Aeby et al. J Inherit Metab Dis. 2007 Oct.

Abstract

The cardiofaciocutaneous (CFC) syndrome is characterized by congenital heart defect, developmental delay, peculiar facial appearance with bitemporal constriction, prominent forehead, downslanting palpebral fissures, curly sparse hair and abnormalities of the skin. CFC syndrome phenotypically overlaps with Noonan and Costello syndromes. Mutations of several genes (PTPN11, HRAS, KRAS, BRAF, MEK1 and MEK2), involved in the mitogen-activated protein kinase (MAPK) pathway, have been identified in CFC-Costello-Noonan patients. Coenzyme Q10 (CoQ10), a lipophilic molecule present in all cell membranes, functions as an electron carrier in the mitochondrial respiratory chain, where it transports electrons from complexes I and II to complex III. CoQ10 deficiency is a rare treatable mitochondrial disorder with various neurological (cerebellar ataxia, myopathy, epilepsy, mental retardation) and extraneurological (cardiomyopathy, nephropathy) signs that are responsive to CoQ10 supplementation. We report the case of a 4-year-old girl who presented a CFC syndrome, confirmed by the presence of a pathogenic R257Q BRAF gene mutation, together with a muscular CoQ10 deficiency. Her psychomotor development was severely impaired, hindered by muscular hypotonia and ataxia, both improving remarkably after CoQ10 treatment. This case suggests that there is a functional connection between the MAPK pathway and the mitochondria. This could be through the phosphorylation of a nuclear receptor essential for CoQ10 biosynthesis. Another hypothesis is that K-Ras, one of the proteins composing the MAPK pathway, might be recruited into the mitochondria to promote apoptosis. This case highlights that CoQ10 might contribute to the pathogenesis of CFC syndrome.

PubMed Disclaimer

MeSH terms